The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression.
View Article and Find Full Text PDFMelanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype.
View Article and Find Full Text PDFMelanoma is the deadliest skin cancer with a very poor prognosis in advanced stages. Although targeted and immune therapies have improved survival, not all patients benefit from these treatments. The mitogen-activated protein kinase ERK5 supports the growth of melanoma cells and .
View Article and Find Full Text PDFBackground: The development of molecularly tailored therapeutic agents such as the BCR/ABL-active tyrosine kinase inhibitors (TKi) resulted in an excellent treatment option for chronic myeloid leukemia (CML) patients. However, following TKi discontinuation, disease relapses in 40-60% of patients, an occurrence very likely due to the persistence of leukemic stem cells that are scarcely sensitive to TKi. Nevertheless, TKi are still the only current treatment option for CML patients.
View Article and Find Full Text PDFThe importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment.
View Article and Find Full Text PDF