Publications by authors named "Zoe Englander"

Background: The anterior cruciate ligament (ACL) is loaded under tension when the tibia translates anteriorly relative to the femur. The shape of the articular surfaces of the tibiofemoral joint may influence the amount of anterior tibial translation under compressive loading. Thus, a steep lateral tibial plateau and a shallow medial plateau are thought to be risk factors for ACL injury.

View Article and Find Full Text PDF

Background: Noncontact anterior cruciate ligament (ACL) injuries typically occur during deceleration movements such as landing or cutting. However, conflicting data have left the kinematic mechanisms leading to these injuries unclear. Quantifying the influence of sagittal and coronal plane knee kinematics on in vivo ACL strain may help to elucidate noncontact ACL injury mechanisms.

View Article and Find Full Text PDF

Background: Bone bruises observed on magnetic resonance imaging (MRI) can provide insight into the mechanisms of noncontact anterior cruciate ligament (ACL) injury. However, it remains unclear whether the position of the knee near the time of injury differs between patients evaluated with different patterns of bone bruising, particularly with regard to valgus angles.

Hypothesis: The position of the knee near the time of injury is similar between patients evaluated with 2 commonly occurring patterns of bone bruising.

View Article and Find Full Text PDF

Background: Quadriceps loading of the anterior cruciate ligament (ACL) may play a role in the noncontact mechanism of ACL injury. Musculoskeletal modeling techniques are used to estimate the intrinsic force of the quadriceps acting at the knee joint.

Purpose/hypothesis: The purpose of this paper was to develop a novel musculoskeletal model of in vivo quadriceps force during dynamic activity.

View Article and Find Full Text PDF

High body mass index (BMI) and obesity have been implicated as risk factors for lumbar degenerative disc disease and low back pain. Despite this, there is limited in vivo data to quantify how obesity influences the mechanical function of intervertebral discs (IVD) in response to activities of daily living. Recently, our lab has developed methodologies to non-invasively measure in vivo IVD deformation resulting from activities of daily living using magnetic resonance (MR) imaging and solid modeling techniques.

View Article and Find Full Text PDF

Background: There is little in vivo data that describe the relationships between patellar tendon orientation, patellar tendon strain, and anterior cruciate ligament (ACL) strain during dynamic activities. Quantifying how the quadriceps load the ACL via the patellar tendon is important for understanding ACL injury mechanisms.

Hypothesis: We hypothesized that flexion angle, patellar tendon orientation, and patellar tendon strain influence ACL strain during a single-leg jump.

View Article and Find Full Text PDF

Background: Some cadaveric studies have indicated that the anterior cruciate ligament (ACL) consists of anteromedial and posterolateral bundles that display reciprocal function with regard to knee flexion. However, several in vivo imaging studies have suggested that these bundles elongate in parallel with regard to flexion. Furthermore, the most appropriate description of the functional anatomy of the ACL is still debated, with the ACL being described as consisting of 2 or 3 bundles or as a continuum of fibers.

View Article and Find Full Text PDF

The purpose of this study was to measure in vivo attachment site to attachment site lengths and strains of the anterior cruciate ligament (ACL) and its bundles throughout a full cycle of treadmill gait. To obtain these measurements, models of the femur, tibia, and associated ACL attachment sites were created from magnetic resonance (MR) images in 10 healthy subjects. ACL attachment sites were subdivided into anteromedial (AM) and posterolateral (PL) bundles.

View Article and Find Full Text PDF

Background: The in vivo mechanics of the anterior cruciate ligament (ACL) and its bundles during dynamic activities are not completely understood. An improved understanding of how the ACL stabilizes the knee is likely to aid in the identification and prevention of injurious maneuvers.

Purpose/hypothesis: The purpose was to measure in vivo ACL strain during a single-legged jump through use of magnetic resonance imaging (MRI) and high-speed biplanar radiography.

View Article and Find Full Text PDF

A potential cause of non-contact anterior cruciate ligament (ACL) injury is landing on an extended knee. In line with this hypothesis, studies have shown that the ACL is elongated with decreasing knee flexion angle. Furthermore, at low flexion angles the patellar tendon is oriented to increase the anterior shear component of force acting on the tibia.

View Article and Find Full Text PDF

Background: Knee positions involved in noncontact anterior cruciate ligament (ACL) injury have been studied via analysis of injury videos. Positions of high ACL strain have been identified in vivo. These methods have supported different hypotheses regarding the role of knee abduction in ACL injury.

View Article and Find Full Text PDF

Background: Changes in knee kinematics after anterior cruciate ligament (ACL) injury may alter loading of the cartilage and thus affect its homeostasis, potentially leading to the development of posttraumatic osteoarthritis. However, there are limited in vivo data to characterize local changes in cartilage thickness and strain in response to dynamic activity among patients with ACL deficiency.

Purpose/hypothesis: The purpose was to compare in vivo tibiofemoral cartilage thickness and cartilage strain resulting from dynamic activity between ACL-deficient and intact contralateral knees.

View Article and Find Full Text PDF

Understanding in vivo joint mechanics during dynamic activity is crucial for revealing mechanisms of injury and disease development. To this end, laboratories have utilized computed tomography (CT) to create 3-dimensional (3D) models of bone, which are then registered to high-speed biplanar radiographic data captured during movement in order to measure in vivo joint kinematics. In the present study, we describe a system for measuring dynamic joint mechanics using 3D surface models of the joint created from magnetic resonance imaging (MRI) registered to high-speed biplanar radiographs using a novel automatic registration algorithm.

View Article and Find Full Text PDF

Background: The incidence of anterior cruciate ligament (ACL) ruptures is 2 to 4 times higher in female athletes as compared with their male counterparts. As a result, a number of recent studies have addressed the hypothesis that female and male patients sustain ACL injuries via different mechanisms. The efficacy of prevention programs may be improved by a better understanding of whether there are differences in the injury mechanism between sexes.

View Article and Find Full Text PDF

Anterior cruciate ligament (ACL) deficient patients have an increased rate of patellofemoral joint (PFJ) osteoarthritis (OA) as compared to the general population. Although the cause of post-injury OA is multi-factorial, alterations in joint biomechanics may predispose patients to cartilage degeneration. This study aimed to compare in vivo PFJ morphology and mechanics between ACL deficient and intact knees in subjects with unilateral ACL ruptures.

View Article and Find Full Text PDF

Impairments in executive function, such as working memory, are almost universal in children with chromosome 22q11.2 deletion syndrome. Delineating the neural underpinnings of these functions would enhance understanding of these impairments.

View Article and Find Full Text PDF

Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed.

View Article and Find Full Text PDF

Neuropathic pain (NP) is caused by damage to the nervous system, resulting in dysfunction and aberrant pain. The cellular functions (e.g.

View Article and Find Full Text PDF

Cerebral palsy (CP) is a heterogeneous group of non-progressive motor disorders caused by injury to the developing fetal or infant brain. Although the defining feature of CP is motor impairment, numerous other neurodevelopmental disabilities are associated with CP and contribute greatly to its morbidity. The relationship between brain structure and neurodevelopmental outcomes in CP is complex, and current evidence suggests that motor and developmental outcomes are related to the spatial pattern and extent of brain injury.

View Article and Find Full Text PDF

Background: Event-related potential studies in schizophrenia have demonstrated amplitude reduction of the P3 in oddball tasks. The P3 has been linked to attention and memory brain functions.

Methods: In 24 schizophrenia patients and 28 control subjects, wavelet transform was used to reveal event-related modulations of the EEG signal during target trials in delta, theta, alpha, beta, and gamma frequency bands.

View Article and Find Full Text PDF

Pretend play emerges in children the world over around 18 months and continues into adolescence and even adulthood. Observing and engaging in pretense are thought to rely on similar neural mechanisms, but little is known about them. Here we examined neural activation patterns associated with observing pretense acts, including high-likelihood, low-likelihood, and imaginary substitute objects, as compared with activation patterns when observing parallel real acts.

View Article and Find Full Text PDF

The present study examines whether race-specific features affect biological motion perception. Activation of the neural action observation and imitation network was measured using functional MRI. During scanning, individuals were asked to imitate and observe basic hand movements of own-race and other-race actors.

View Article and Find Full Text PDF