Background: N-terminal cleavage products of mutant huntingtin (htt) generate pathologic neuronal inclusion bodies. The precise length of the htt fragment, termed Cp-A/1, that produces HD pathologic inclusions is unknown.
Objective: We sought to elucidate the protein sequence elements within the N-terminus of htt that mediate its proteolysis based on a model in which engineered htt fragments terminating at residue 171 are cleaved to produce Cp-A/1 fragments.
Cramer et al. (Reports, 23 March 2012, p. 1503; published online 9 February 2012) demonstrates short-term bexarotene treatment clearing preexisting β-amyloid deposits from the brains of APP/PS1ΔE9 mice with low amyloid burden, providing a rationale for repurposing this anticancer agent as an Alzheimer's disease (AD) therapeutic.
View Article and Find Full Text PDFBackground: N-terminal fragments of mutant huntingtin (htt) that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1), form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD). These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.
View Article and Find Full Text PDF