Publications by authors named "Zoe A Wilson"

Formation of functional pollen and successful fertilization rely on the spatial and temporal regulation of anther and pollen development. This process responds to environmental cues to maintain optimal fertility despite climatic changes. Arabidopsis transcription factors basic helix-loop-helix (bHLH) 10, 89, and 91 were previously thought to be functionally redundant in their control of male reproductive development, however here we show that they play distinct roles in the integration of light signals to maintain pollen development under different environmental conditions.

View Article and Find Full Text PDF

The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.

View Article and Find Full Text PDF

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates.

View Article and Find Full Text PDF

Heat stress has a deleterious effect on male fertility in rice (Oryza sativa), but mechanisms to protect against heat stress in rice male gametophytes are poorly understood. Here, we have isolated and characterized a heat-sensitive male-sterile rice mutant, heat shock protein60-3b (oshsp60-3b), that shows normal fertility at optimal temperatures but decreasing fertility as temperatures increase. High temperatures interfered with pollen starch granule formation and reactive oxygen species (ROS) scavenging in oshsp60-3b anthers, leading to cell death and pollen abortion.

View Article and Find Full Text PDF

The Poaceae, or grasses, include many agriculturally important cereal crops such as rice (), maize (), barley () and bread wheat (). Barley is a widely grown cereal crop used for stock feed, malting and brewing. Abiotic stresses, particularly global warming, are the major causes of crop yield losses by affecting fertility and seed set.

View Article and Find Full Text PDF

Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-regulation between the tapetum and microspores, but how this is achieved is currently not characterized. ABORTED MICROSPORES (AMS), a tapetum transcription factor, is important for pollen wall formation, but also has an undefined role in early pollen development.

View Article and Find Full Text PDF

Anther development and dehiscence is considered from an evolutionary perspective to identify drivers for differentiation, functional conservation and to identify key questions for future male reproduction research. Development of viable pollen and its timely release from the anther are essential for fertilisation of angiosperm flowers. The formation and subsequent dehiscence of the anther are under tight regulatory control, and these processes are remarkably conserved throughout the diverse families of the angiosperm clade.

View Article and Find Full Text PDF

Impaired carbon metabolism and reproductive development constrain crop productivity during heat stress. Reproductive development is energy intensive, and its requirement for respiratory substrates rises as associated metabolism increases with temperature. Understanding how these processes are integrated and the extent to which they contribute to the maintenance of yield during and following periods of elevated temperatures is important for developing climate-resilient crops.

View Article and Find Full Text PDF

Understanding the control of fertility is critical for crop yield and breeding; this is particularly important for hybrid breeding to capitalize upon the resultant hybrid vigour. Different hybrid breeding systems have been adopted; however, these are challenging and crop specific. Mutants with environmentally reversible fertility offer valuable opportunities for hybrid breeding.

View Article and Find Full Text PDF

A key target for the improvement of Oryza sativa (rice) is the development of heat-tolerant varieties. This necessitates the development of high-throughput methodologies for the screening of heat tolerance. Progress has been made to this end via visual scoring and chlorophyll fluorescence; however, these approaches demand large infrastructural investments to expose large populations of adult plants to heat stress.

View Article and Find Full Text PDF

A well-defined set of regulatory pathways control entry into the reproductive phase in flowering plants, but little is known about the mechanistic control of the end-of-flowering despite this being a critical process for optimization of fruit and seed production. Complete fruit removal, or lack of fertile fruit-set, prevents timely inflorescence arrest in Arabidopsis, leading to a previous proposal that a cumulative fruit/seed-derived signal causes simultaneous 'global proliferative arrest'. Recent studies have suggested that inflorescence arrest involves gene expression changes in the inflorescence meristem that are, at least in part, controlled by the FRUITFULL-APETALA2 pathway; however, there is limited understanding of how this process is coordinated at the whole-plant level.

View Article and Find Full Text PDF

Sporophytic pollen coat proteins (sPCPs) derived from the anther tapetum are deposited into pollen wall cavities and function in pollen-stigma interactions, pollen hydration, and environmental protection. In Arabidopsis, 13 highly abundant proteins have been identified in pollen coat, including seven major glycine-rich proteins GRP14, 16, 17, 18, 19, 20, and GRP-oleosin; two caleosin-related family proteins (AT1G23240 and AT1G23250); three lipase proteins EXL4, EXL5 and EXL6, and ATA27/BGLU20. Here, we show that GRP14, 17, 18, 19, and EXL4 and EXL6 fused with green fluorescent protein (GFP) are translated in the tapetum and then accumulate in the anther locule following tapetum degeneration.

View Article and Find Full Text PDF

Wheat is one of the most important crops in the world; however, loss of genetic variability and abiotic stress caused by variable climatic conditions threaten future productivity. Reproduction is critical for wheat yield; however, pollen development is amongst the developmental stages most sensitive to stresses such as heat, cold, or drought. A better understanding of how anther and pollen development is regulated is needed to help produce more resilient crops and ensure future yield increases.

View Article and Find Full Text PDF

ROOT UV-B SENSITIVE4 (RUS4) encodes a protein with no known function that contains a conserved Domain of Unknown Function 647 (DUF647). The DUF647-containing proteins RUS1 and RUS2 have previously been associated with root UV-B-sensing pathway that plays a major role in Arabidopsis early seedling morphogenesis and development. Here, we show that RUS4 knockdown Arabidopsis plants, referred to as amiR-RUS4, were severely reduced in male fertility with indehiscent anthers.

View Article and Find Full Text PDF

Many monocot plants have high social and economic value. These include grasses such as rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare), which produce soft commodities for many food and beverage industries, and ornamental flowers such ase lily (Lilium longiflorum) and orchid (Oncidium Gower Ramsey), which represent an important component of international flower markets. There is constant pressure to improve the development and diversity of these species, with a significant emphasis on flower development, and this is particularly relevant considering the impact of changing environments on reproduction and thus yield.

View Article and Find Full Text PDF

Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only.

View Article and Find Full Text PDF

Mitochondrial uncoupling proteins (UCPs) sustain mitochondrial respiration independent of intracellular ATP concentration. Uncoupled respiration is particularly beneficial under stress conditions, during which both photosynthesis and respiration may be impaired. Sustaining carbon fixation during the reproductive phase is essential for plants to develop viable pollen grains and for seed setting.

View Article and Find Full Text PDF

In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co-expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development.

View Article and Find Full Text PDF

Successful fertilization relies on the production and effective release of viable pollen. Failure of anther opening (dehiscence), results in male sterility, although the pollen may be fully functional. MYB26 regulates the formation of secondary thickening in the anther endothecium, which is critical for anther dehiscence and fertility.

View Article and Find Full Text PDF

Background: Accurate floral staging is required to aid research into pollen and flower development, in particular male development. Pollen development is highly sensitive to stress and is critical for crop yields. Research into male development under environmental change is important to help target increased yields.

View Article and Find Full Text PDF

Viable pollen is essential for plant reproduction and crop yield. Its production requires coordinated expression at specific stages during anther development, involving early meiosis-associated events and late pollen wall formation. The ABORTED MICROSPORES (AMS) transcription factor is a master regulator of sporopollenin biosynthesis, secretion and pollen wall formation in Arabidopsis.

View Article and Find Full Text PDF

Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops.

View Article and Find Full Text PDF

Transgenic Lilium lines have been generated by Agrobacterium -mediated transformation that have enhanced resistance to Botrytis cinerea as a consequence of ectopic expression of a rice chitinase gene. The production of ornamentals is an important global industry, with Lilium being one of the six major bulb crops in the world. The international trade in ornamentals is in the order of £60-75 billion and is expected to increase worldwide by 2-4% per annum.

View Article and Find Full Text PDF

Floral formation, in particular anther and pollen development, is a complex biological process with critical importance for seed set and for targeted plant breeding. Many key transcription factors regulating this process have been identified; however, their direct role remains largely unknown. Using publicly available gene expression data from Arabidopsis (Arabidopsis thaliana), focusing on those studies that analyze stamen-, pollen-, or flower-specific expression, we generated a network model of the global transcriptional interactions (FlowerNet).

View Article and Find Full Text PDF