Publications by authors named "Zlokovic B"

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-β (CSF sPDGFRβ, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRβ in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.

View Article and Find Full Text PDF

Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury.

View Article and Find Full Text PDF

Background: Deferoxamine (DFO) and other iron chelators are clinically used for cancer and stroke. They may also be useful for Alzheimers disease (AD) to diminish iron from microbleeds. DFO may also stimulate antioxidant membrane repair which is impaired during AD.

View Article and Find Full Text PDF

Cell-based therapies hold great promise for brain repair after stroke. While accumulating evidence confirms the preclinical and clinical benefits of cell therapies, the underlying mechanisms by which they promote brain repair remain unclear. Here, we briefly review endogenous mechanisms of brain repair after ischaemic stroke and then focus on how different stem and progenitor cell sources can promote brain repair.

View Article and Find Full Text PDF

Tissue regeneration is limited in several organs, including the kidney, contributing to the high prevalence of kidney disease globally. However, evolutionary and physiological adaptive responses and the presence of renal progenitor cells suggest an existing remodeling capacity. This study uncovered endogenous tissue remodeling mechanisms in the kidney that were activated by the loss of body fluid and salt and regulated by a unique niche of a minority renal cell type called the macula densa (MD).

View Article and Find Full Text PDF

Background: The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neurodegenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD).

View Article and Find Full Text PDF
Article Synopsis
  • - Liver failure can disrupt the Blood CNS Barrier (BCB), leading to damage in the Central Nervous System (CNS), but the exact mechanisms are not yet fully understood.
  • - Researchers developed advanced imaging techniques to study the integrity of the BCB, discovering that specific genetic changes in mice lead to BCB breakdown and subsequent brain damage.
  • - The study highlights a potential protective role of a molecule called HFE2, which could prevent BCB dysfunction and offers insights into treating conditions like multiple sclerosis related to blood-brain barrier issues.
View Article and Find Full Text PDF

As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration.

View Article and Find Full Text PDF

Air pollution is associated with risks of dementia and accelerated cognitive decline. Rodent air pollution models have shown white matter vulnerability. This study uses diffusion tensor imaging (DTI) to quantify changes to white matter microstructure and tractography in multiple myelinated regions after exposure to diesel exhaust particulate (DEP).

View Article and Find Full Text PDF

Background: Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema.

Aims: Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers.

View Article and Find Full Text PDF

Resting-state functional connectivity (FC) is suggested to be cross-sectionally associated with both vascular burden and Alzheimer's disease (AD) pathology. For instance, studies in pre-clinical AD subjects have shown increases of cerebral spinal fluid soluble platelet-derived growth factor receptor-β (CSF sPDGFRβ, a marker of BBB breakdown) but have not demonstrated if this vascular impairment affects neuronal dysfunction. It's possible that increased levels of sPDGFRβ in the CSF may correlate with impaired FC in metabolically demanding brain regions (i.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses a family affected by spastic paraparesis due to a novel genetic mutation (F388S), with symptoms starting at age 23 and leading to significant mobility loss by their late 20s.
  • Comprehensive medical evaluations, including imaging and pathology, revealed abnormal amyloid-β and tau levels, linking the condition to characteristics typically seen in Alzheimer's disease, although with distinct patterns noted in brain imaging.
  • Neuropathological findings confirmed abnormal plaques and damage in specific brain areas, suggesting this mutation results in a severe form of spastic paraparesis with early onset linked to increased production of longer amyloid-β peptides.
View Article and Find Full Text PDF