In the case of pandemics such as COVID-19, the rapid development of medicines addressing the symptoms is necessary to alleviate the pressure on the medical system. One of the key steps in medicine evaluation is the determination of pIC50 factor, which is a negative logarithmic expression of the half maximal inhibitory concentration (IC50). Determining this value can be a lengthy and complicated process.
View Article and Find Full Text PDFImaging is one of the main tools of modern astronomy-many images are collected each day, and they must be processed. Processing such a large amount of images can be complex, time-consuming, and may require advanced tools. One of the techniques that may be employed is artificial intelligence (AI)-based image detection and classification.
View Article and Find Full Text PDFFire is usually detected with fire detection systems that are used to sense one or more products resulting from the fire such as smoke, heat, infrared, ultraviolet light radiation, or gas. Smoke detectors are mostly used in residential areas while fire alarm systems (heat, smoke, flame, and fire gas detectors) are used in commercial, industrial and municipal areas. However, in addition to smoke, heat, infrared, ultraviolet light radiation, or gas, other parameters could indicate a fire, such as air temperature, air pressure, and humidity, among others.
View Article and Find Full Text PDFUrinary bladder cancer is one of the most common cancers of the urinary tract. This cancer is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and care.
View Article and Find Full Text PDFSince the outbreak of coronavirus disease-2019 (COVID-19), the whole world has taken interest in the mechanisms of its spread and development. Mathematical models have been valuable instruments for the study of the spread and control of infectious diseases. For that purpose, we propose a two-way approach in modeling COVID-19 spread: a susceptible, exposed, infected, recovered, deceased (SEIRD) model based on differential equations and a long short-term memory (LSTM) deep learning model.
View Article and Find Full Text PDFBackground And Objectives: Although ML has been studied for different epidemiological and clinical issues as well as for survival prediction of COVID-19, there is a noticeable shortage of literature dealing with ML usage in prediction of disease severity changes through the course of the disease. In that way, predicting disease progression from mild towards moderate, severe and critical condition, would help not only to respond in a timely manner to prevent lethal results, but also to minimize the number of patients in hospitals where this is not necessary.
Methods: We present a methodology for the classification of patients into 4 distinct categories of the clinical condition of COVID-19 disease.
Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability.
View Article and Find Full Text PDFUrinary bladder cancer is one of the most common urinary tract cancers. Standard diagnosis procedure can be invasive and time-consuming. For these reasons, procedure called optical biopsy is introduced.
View Article and Find Full Text PDFInt J Environ Res Public Health
January 2021
Estimation of the epidemiology curve for the COVID-19 pandemic can be a very computationally challenging task. Thus far, there have been some implementations of artificial intelligence (AI) methods applied to develop epidemiology curve for a specific country. However, most applied AI methods generated models that are almost impossible to translate into a mathematical equation.
View Article and Find Full Text PDFHealth Informatics J
February 2021
This paper investigates the possibility of the implementation of Genetic Programming (GP) algorithm on a publicly available COVID-19 data set, in order to obtain mathematical models which could be used for estimation of confirmed, deceased, and recovered cases and the estimation of epidemiology curve for specific countries, with a high number of cases, such as China, Italy, Spain, and USA and as well as on the global scale. The conducted investigation shows that the best mathematical models produced for estimating confirmed and deceased cases achieved scores of 0.999, while the models developed for estimation of recovered cases achieved the score of 0.
View Article and Find Full Text PDFCOVID-19 represents one of the greatest challenges in modern history. Its impact is most noticeable in the health care system, mostly due to the accelerated and increased influx of patients with a more severe clinical picture. These facts are increasing the pressure on health systems.
View Article and Find Full Text PDFComput Math Methods Med
June 2020
Coronavirus (COVID-19) is a highly infectious disease that has captured the attention of the worldwide public. Modeling of such diseases can be extremely important in the prediction of their impact. While classic, statistical, modeling can provide satisfactory models, it can also fail to comprehend the intricacies contained within the data.
View Article and Find Full Text PDFIn this paper, the urinary bladder cancer diagnostic method which is based on Multi-Layer Perceptron and Laplacian edge detector is presented. The aim of this paper is to investigate the implementation possibility of a simpler method (Multi-Layer Perceptron) alongside commonly used methods, such as Deep Learning Convolutional Neural Networks, for the urinary bladder cancer detection. The dataset used for this research consisted of 1997 images of bladder cancer and 986 images of non-cancer tissue.
View Article and Find Full Text PDF