The subthalamic nucleus (STN) receives cortical inputs via the and pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials.
View Article and Find Full Text PDFAs science and technology evolve, there is an increasing need for promotion of international scientific exchange. Collaborations, while offering substantial opportunities for scientists and benefit to society, also present challenges for those working with animal models, such as non-human primates (NHPs). Diversity in regulation of animal research is sometimes mistaken for the absence of common international welfare standards.
View Article and Find Full Text PDFVarious eye movement abnormalities and impairments in visual information processing have been reported in patients with schizophrenia. Therefore, dysfunction of saccadic eye movements is a potential biological marker for schizophrenia. In the present study, we used a pharmacological model of schizophrenia symptoms in marmosets and compared the eye movement characteristics of marmosets during free-viewing, using an image set identical to those used for human studies.
View Article and Find Full Text PDFThe subthalamic nucleus (STN) plays a key role in the control of voluntary movements and basal ganglia disorders, such as Parkinson's disease and hemiballismus. The STN receives glutamatergic inputs directly from the cerebral cortex via the cortico-STN hyperdirect pathway and GABAergic inputs from the external segment of the globus pallidus (GPe) via the cortico-striato-GPe-STN indirect pathway. The STN then drives the internal segment of the globus pallidus, which is the output nucleus of the basal ganglia.
View Article and Find Full Text PDFThe common marmoset has been proposed as a potential alternative to macaque monkey as a primate model for neuroscience and medical research. Here, we have newly developed a stereotaxic neuronal recording system for awake marmosets under the head-fixed condition by modifying that for macaque monkeys. Using this system, we recorded neuronal activity in the cerebral cortex of awake marmosets and successfully identified the primary motor cortex by intracortical microstimulation.
View Article and Find Full Text PDF