Publications by authors named "Zizhu Fan"

Hypergraph neural networks have gained widespread attention due to their effectiveness in handling graph-structured data with complex relationships and multi-dimensional interactions. However, existing hypergraph neural network models mainly rely on planar message-passing mechanisms, which have limitations: (i) low efficiency in encoding long-distance information; (ii) underutilization of high-order neighborhood features, aggregating information only on the edges of the original graph. This paper proposes an innovative hierarchical hypergraph neural network (HCHG) to address these issues.

View Article and Find Full Text PDF

Fast-developing single-cell technologies create unprecedented opportunities to reveal cell heterogeneity and diversity. Accurate classification of single cells is a critical prerequisite for recovering the mechanisms of heterogeneity. However, the scRNA-seq profiles we obtained at present have high dimensionality, sparsity, and noise, which pose challenges for existing clustering methods in grouping cells that belong to the same subpopulation based on transcriptomic profiles.

View Article and Find Full Text PDF

In transfer learning model, the source domain samples and target domain samples usually share the same class labels but have different distributions. In general, the existing transfer learning algorithms ignore the interclass differences and intraclass similarities across domains. To address these problems, this article proposes a transfer learning algorithm based on discriminative Fisher embedding and adaptive maximum mean discrepancy (AMMD) constraints, called discriminative Fisher embedding dictionary transfer learning (DFEDTL).

View Article and Find Full Text PDF

We modify the conventional principal component analysis (PCA) and propose a novel subspace learning framework, modified PCA (MPCA), using multiple similarity measurements. MPCA computes three similarity matrices exploiting the similarity measurements: 1) mutual information; 2) angle information; and 3) Gaussian kernel similarity. We employ the eigenvectors of similarity matrices to produce new subspaces, referred to as similarity subspaces.

View Article and Find Full Text PDF

Minimum squared error based classification (MSEC) method establishes a unique classification model for all the test samples. However, this classification model may be not optimal for each test sample. This paper proposes an improved MSEC (IMSEC) method, which is tailored for each test sample.

View Article and Find Full Text PDF

The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure.

View Article and Find Full Text PDF