Publications by authors named "Zizhen Zeng"

Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (Nv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis).

View Article and Find Full Text PDF

We have developed a new concept for reversible peptide stapling that involves macrocyclization between two amino groups and decyclization promoted via dual 1,4-elimination. Depending on the trigger moiety, this strategy could be employed to selectively deliver peptides to either intracellular or extracellular targets. As a proof of concept, a peptide inhibitor targeting a lysine-specific demethylase 1 (LSD1) was temporarily cyclized to enhance its stability and ability to cross the cell membrane.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT), as the emerging modality of cancer therapy based on Fenton or Fenton-like reactions, still suffers from low efficacy of hydroxyl radical generation, which requires full exposure of reaction sites of CDT nanoagents to intracellular HO. However, the amount of exposed reaction sites is severely restrained by the controlled size (<200 nm) and the limited specific surface area of nanoagents. Herein, we highlight the in-situ bloomed micrometer-scale CoMn-based layered double hydroxide (CoMn-LDH) ultrathin nanosheets, which are derived from CoMn boride-based CMB@ss-SF nanospheres in response to overexpressed glutathione (GSH) and dissolved oxygen in tumor microenvironment (TME), accomplishing intensive photothermal-enhanced CDT.

View Article and Find Full Text PDF

Naturally occurring cyclic antimicrobial peptides (AMPs) such as tyrocidine A (Tyrc A) and gramicidin S (GS) are appealing targets for the development of novel antibiotics. However, their therapeutic potentials are limited by undesired hemolytic activity and relatively poor activity against Gram-negative bacteria. Inspired by polycationic lipopeptide polymyxin B (PMB), the so called 'last-resort' antibiotic for the treatment of infections caused by multidrug-resistant Gram-negative bacteria, we synthesized and biologically evaluated a series of polycationic analogues derived from Tyrc A.

View Article and Find Full Text PDF