Publications by authors named "Zizeng Lin"

Article Synopsis
  • * Results showed that these systems can achieve over 80% removal rates for various nitrogen types, highlighting sponge iron's potential for environmental applications.
  • * However, prolonged exposure to sponge iron can lead to negative effects on plant health and microbial diversity due to stress from reactive oxygen species (ROS).
View Article and Find Full Text PDF

With the increasing production of spent bleaching clay (SBC), the recovery of the waste oil in SBC is becoming an important and urgent needs for our environment and economy. In this research, we have developed a new effective recovery technique to recover oil from SBC by use of liquefied dimethyl ether (DME). Over 65 wt% oil and 81% wt.

View Article and Find Full Text PDF

To explore the best clogging restoration measures for ceramic permeable bricks, ceramic permeable bricks were accurately clogged using a self-designed device by controlling the permeability, and different technical measures were adopted to restore the permeability. Then, the recovery effect, operating parameters and pore change inside the bricks using pressure washing were further discussed. The results showed that pressure washing was the best recovery measure, the joint methods was not recommended due to performance to price ratio.

View Article and Find Full Text PDF

This study investigated the decontamination performance of a bioretention system using a sand-based filler constructed using sand and peat soil. The filler was constructed according to a simple proportioning method that considers water turnover time and organic content. Different inorganic constituents were added to the filler including zeolite, volcanic rock, coal slag, vermiculite and perlite to further improve the decontamination effect.

View Article and Find Full Text PDF

The risk of heavy metal contamination of infiltrated water and underground soil on a permeable brick paving system was investigated. The paving system was constructed as a frame structure base on top of a 1.0-m-thick clay layer with permeable ceramic brick at the surface.

View Article and Find Full Text PDF

To fully investigate the effectiveness of fillers in the removal of pollutants from rainwater, gravel, zeolite, slag, volcanic rock and iron filings with a 3-5 cm particle size were applied to construct a brick paving system with a frame structure for the removal of pollutants. Total suspended solids (TSS), chemical oxygen demand (COD), ammonia nitrogen (NH-N), total nitrogen (TN), total phosphorus (TP) and heavy metals (Cu, Zn, and Pb) in the influent and effluent were measured, and the effectiveness and mechanism of pollutant removal were further investigated. The results showed that the permeable brick system effectively reduced TSS, TP, Zn, Cu and Pb and was relatively ineffective in reducing NH-N, TN and COD.

View Article and Find Full Text PDF