The linear assembly of nanocrystals (NCs) with orientational order presents a significant challenge in the field of colloidal assembly. This study presents an efficient strategy for assembling oleic acid (OAH)-capped, faceted rare earth NCs─such as nanorods, nanoplates, and nanodumbbells─into flexible chain-like superstructures. Remarkably, these NC chains exhibit a high degree of particle orientation even with an interparticle distance reaching up to 15 nm.
View Article and Find Full Text PDFUnmanned aerial vehicle (UAV) granular fertilizer spreading technology has been gradually applied in agricultural production. However, in the process of spreading operation, the actual influence effect of each factor in field operation is still unclear. Based on the self-developed UAV fertilizer spreading system, this paper explores the effects of three factors, the baffle retraction (B), spreading disc speed (D), and UAV flight altitude (H), on the granular fertilizer spreading effect in the actual field scenarios through the orthogonal test and taking the coefficient of variation (Cv) and relative error of fertilizer application rate (λ) as the evaluation indexes.
View Article and Find Full Text PDFTwo-dimensional (2D) amorphous nanosheets with ultrathin thicknesses have properties that differ from their crystalline counterparts. However, conventional methods for growing 2D materials often produce either crystalline flakes or amorphous nanosheets with an uncontrollable thickness. Here, we report that ultrathin amorphous metal-oxide nanosheets featuring superior flatness can be realized through the molecularly confined topochemical transformation of MXene.
View Article and Find Full Text PDFObjectives: To systematically summarize and compare the health management projects on the aged population funded by the National Institutes of Health (NIH) in the US and the National Natural Science Foundation of China (NSFC) in China.
Methods: All elderly-related projects from 2007 to 2022 were retrieved by searching the project titles, abstracts, and keywords such as "older adults," "elderly," "aged," "health management," and so on. Python, CiteSpace, and VOSviewer were used to extract, integrate, and visualize the relevant information.
This contribution describes the self-assembly of colloidal nanodumbbells (NDs) with tunable shapes within cylindrical channels. We present that the intrinsic concave geometry of NDs endows them with peculiar packing and interlocking behaviors, which, in conjunction with the adjustable confinement constraint, leads to a variety of superstructures such as tilted-ladder chains and crossed-chain superlattices. A mechanistic investigation, corroborated by geometric calculations, reveals that the phase behavior of NDs under strong confinement can be rationalized by the entropy-driven maximization of the packing efficiency.
View Article and Find Full Text PDFBy using in-site generated formate, 2D HOFs of TCPP, with excellent stability and permanent porosity (BET surface area larger than 560 m2 g-1), have been obtained. The constructed 2D square-like TCPP-HCO2 grid sheets have shown considerable in-plane stability that comparable to the TCPP-based 2D MOFs, that can be exfoliated into atomically thin 2D nanosheets with efficient photocatalytic activity in aqueous system. These results are expected to shed light on the application-orientated one-pot synthesis for new kinds of multi-dimensional HOFs.
View Article and Find Full Text PDFPrecise revealing the mechanisms of excited-state intermolecular proton transfer (ESPT) and the corresponding geometrical relaxation upon photoexcitation and photoionization remains a formidable challenge. In this work, the compound (E)-4-(((4H-1,2,4-triazol-4-yl)imino)methyl)-2,6-dimethoxyphenol (TIMDP) adopting a D-π-A molecular architecture featuring a significant intramolecular charge transfer (ICT) effect has been designed. With the presence of perchloric acid (35 %), TIMDP can be dissolved through the formation of a HClO -H O-OH(TIMDP)-N(TIMDP) hydrogen-bonding bridge.
View Article and Find Full Text PDF