Advanced smart polymer materials with the ability of reversible deformation under external stimuli hold great potential in robotics, soft machines, and flexible electronics. However, the complexity and low efficiency for fabricating actuators along with their limited functionality hinder further progress. Here an efficient and mild catalyst-free thiol-yne click polymerization was developed to fabricate photosensitive polyimide (PI) films.
View Article and Find Full Text PDFBiofilm-associated infections exert more severe and harmful attacks on human health since they can accelerate the generation and development of the antibiotic resistance of the embedded bacteria. Anti-biofilm materials and techniques that can eliminate biofilms effectively are in urgent demand. Therefore, we designed a type I photosensitizer (TTTDM) with an aggregation-induced emission (AIE) property and used F-127 to encapsulate the TTTDM into nanoparticles (F-127 AIE NPs).
View Article and Find Full Text PDFBiosens Bioelectron
November 2022
Visualization of immunocyte-microbe interaction is of great importance to reveal the physiological role and working mechanism of innate and adaptive immune system. The lack of rapid and stable microbial labeling platform and insufficient understanding of macrophage-microbe interaction may delay precautions that could be made. In this contribution, a clickable AIEgen, CDPP-NCS, containing a cationic pyridinium moiety for targeting bacteria and an isothiocyanate moiety for covalently bonding with amine groups, is successfully developed.
View Article and Find Full Text PDFA rapid molecular diagnostic technique targeting circulating tumor DNA (ctDNA) has become one of the most clinically significant liquid biopsy methods for non-invasive and timely diagnosis of cancer. Herein, a sensitive detection system of ctDNA based on a fluorescence resonance energy transfer (FRET) system using upconversion nanoparticles (UCNPs) and gold nanocages (AuNCs) was constructed. Through the doping of Yb and Tm ions, the excitation and emission wavelengths of UCNPs were adjusted to 980 nm and 806 nm, respectively.
View Article and Find Full Text PDF