Stubborn resistant bacteria, bacterial biofilms and severe inflammation are challenging issues in refractory keratitis treatment. Herein, we design a multifunctional near-infrared light-responsive nanoplatform for efficient therapy of refractory keratitis based on a "three-birds-with-one-stone" strategy, which integrates the bacteria targeting photodynamic therapy, nitric oxide (NO) sterilization, and NO-mediated anti-inflammatory property into one system. This nanoplatform (UCNANs) is constructed using the dual-emissive upconversion nanoparticles (UCNPs) as cores coated with mesoporous silica for the loading of photosensitizers with aggregation-induced emission (AIE) property and the grafting of NO donors and bacteria targeting molecules.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.bioactmat.
View Article and Find Full Text PDFImplanted biomaterials such as medical catheters are prone to be adhered by proteins, platelets and bacteria due to their surface hydrophobicity characteristics, and then induce related infections and thrombosis. Hence, the development of a versatile strategy to endow surfaces with antibacterial and antifouling functions is particularly significant for blood-contacting materials. In this work, CuSO/HO was used to trigger polydopamine (PDA) and poly-(sulfobetaine methacrylate) (PSBMA) co-deposition process to endow polyurethane (PU) antibacterial and antifouling surface (PU/PDA(Cu)/PSBMA).
View Article and Find Full Text PDF