Publications by authors named "Ziyu Xiang"

Semiconductor moiré superlattices provide a versatile platform to engineer quantum solids composed of artificial atoms on moiré sites. Previous studies have mostly focused on the simplest correlated quantum solid-the Fermi-Hubbard model-in which intra-atom interactions are simplified to a single onsite repulsion energy . Here we report the experimental observation of Wigner molecular crystals emerging from multielectron artificial atoms in twisted bilayer tungsten disulfide moiré superlattices.

View Article and Find Full Text PDF

One-dimensional (1D) interacting electrons are often described as a Luttinger liquid having properties that are intrinsically different from those of Fermi liquids in higher dimensions. In materials systems, 1D electrons exhibit exotic quantum phenomena that can be tuned by both intra- and inter-1D-chain electronic interactions, but their experimental characterization can be challenging. Here we demonstrate that layer-stacking domain walls (DWs) in van der Waals heterostructures form a broadly tunable Luttinger liquid system, including both isolated and coupled arrays.

View Article and Find Full Text PDF

Transition metal dichalcogenide-based moiré superlattices exhibit strong electron-electron correlations, thus giving rise to strongly correlated quantum phenomena such as generalized Wigner crystal states. Evidence of Wigner crystals in transition metal dichalcogenide moire superlattices has been widely reported from various optical spectroscopy and electrical conductivity measurements, while their microscopic nature has been limited to the basic lattice structure. Theoretical studies predict that unusual quasiparticle excitations across the correlated gap between upper and lower Hubbard bands can arise due to long-range Coulomb interactions in generalized Wigner crystal states.

View Article and Find Full Text PDF
Article Synopsis
  • - Moiré superlattices are a promising platform for studying new quantum states and phenomena, including correlated insulators and moiré excitons.
  • - Scanning tunnelling microscopy has been critical in examining the atomic-scale behaviors of these moiré correlated ground states, but visualizing quantum excited states remains difficult.
  • - The authors introduce a new technique called photocurrent tunnelling microscopy, which uses laser excitation to visualize the distribution of electrons and holes in a moiré exciton, revealing important insights about charge transfer and electron-hole interactions in twisted bilayer WS.
View Article and Find Full Text PDF

The search for materials with flat electronic bands continues due to their potential to drive strong correlation and symmetry breaking orders. Electronic moirés formed in van der Waals heterostructures have proved to be an ideal platform. However, there is no holistic experimental picture for how superlattices modify electronic structure.

View Article and Find Full Text PDF