IEEE Trans Pattern Anal Mach Intell
December 2024
Object parts serve as crucial intermediate representations in various downstream tasks, but part-level representation learning still has not received as much attention as other vision tasks. Previous research has established that Vision Transformer can learn instance-level attention without labels, extracting high-quality instance-level representations for boosting downstream tasks. In this paper, we achieve unsupervised part-specific attention learning using a novel paradigm and further employ the part representations to improve part discovery performance.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2024
As a pivotal subfield within the domain of time series forecasting, runoff forecasting plays a crucial role in water resource management and scheduling. Recent advancements in the application of artificial neural networks (ANNs) and attention mechanisms have markedly enhanced the accuracy of runoff forecasting models. This article introduces an innovative hybrid model, ResTCN-DAM, which synergizes the strengths of deep residual network (ResNet), temporal convolutional networks (TCNs), and dual attention mechanisms (DAMs).
View Article and Find Full Text PDFGraph Neural Networks (GNNs) are often viewed as black boxes due to their lack of transparency, which hinders their application in critical fields. Many explanation methods have been proposed to address the interpretability issue of GNNs. These explanation methods reveal explanatory information about graphs from different perspectives.
View Article and Find Full Text PDF