Publications by authors named "Ziyu Huo"

Preclinical studies have shown that immunostimulatory cytokines elicit antitumor immune responses but their clinical use is limited by severe immune-related adverse events upon systemic administration. Here, we report a facile and versatile strategy for noncovalently anchoring potent Fc-fused cytokine molecules to the surface of size-discrete particles decorated with Fc-binding peptide for local administration. Following intratumoral injection, particle-anchored Fc cytokines exhibit size-dependent intratumoral retention.

View Article and Find Full Text PDF

Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to petrochemical-based polyolefins. Enantioselective ring-opening polymerization and ring-opening copolymerization of racemic monomers offer access to stereoregular polymers, specifically enantiopure polymers that form stereocomplexes with improved physicochemical and mechanical properties.

View Article and Find Full Text PDF

Stereoselective ring-opening polymerization catalysts are used to produce degradable stereoregular poly(lactic acids) with thermal and mechanical properties that are superior to those of atactic polymers. However, the process of discovering highly stereoselective catalysts is still largely empirical. We aim to develop an integrated computational and experimental framework for efficient, predictive catalyst selection and optimization.

View Article and Find Full Text PDF

Transforming renewable resources into functional and degradable polymers is driven by the ever-increasing demand to replace unsustainable polyolefins. However, the utility of many degradable homopolymers remains limited due to their inferior properties compared to commodity polyolefins. Therefore, the synthesis of sequence-defined copolymers from one-pot monomer mixtures is not only conceptually appealing in chemistry, but also economically attractive by maximizing materials usage and improving polymers' performances.

View Article and Find Full Text PDF

A polymer actuator typically responds to only one or two types of stimuli, where sensing and actuation are simultaneously exerted by the same responsive polymer. In cells, sensing and actuation are exerted separately by different biomolecules, which are integrated into nanoscale assemblies to construct the signaling network, making cells a multistimuli responsive and multimodal system. Inspired by the structure-function relationship of the signaling network in cells, we have developed a strategy to select and assemble proper functional polymers into assemblies, where sensing and actuation are exerted by different polymers, and the assemblies can present novel functions beyond that of each polymer component.

View Article and Find Full Text PDF

Multi-stimuli responsive fluorescence probe could pave the way for monitoring more complex environmental changes. Here we prepared multifunctional nanoparticle FeO@SiO@P(DMAEMA-co-TPEE), which displayed yolk-shell morphology with well-defined polymer brush. With superparamagnetic FeO component and pH/temperature dual sensitive PDMAEMA polymer brush, the as prepared nanoparticles (YS-NPs) exhibited as multi-stimuli responsive fluorescence probe for real-time visual monitoring of environmental changes such as magnetic field, temperature and pH.

View Article and Find Full Text PDF