Coarse columnar grains and heterogeneously distributed phases commonly form in metallic alloys produced by three-dimensional (3D) printing and are often considered undesirable because they can impart nonuniform and inferior mechanical properties. We demonstrate a design strategy to unlock consistent and enhanced properties directly from 3D printing. Using Ti-5Al-5Mo-5V-3Cr as a model alloy, we show that adding molybdenum (Mo) nanoparticles promotes grain refinement during solidification and suppresses the formation of phase heterogeneities during solid-state thermal cycling.
View Article and Find Full Text PDFAdditive manufacturing (AM) creates digitally designed parts by successive addition of material. However, owing to intrinsic thermal cycling, metallic parts produced by AM almost inevitably suffer from spatially dependent heterogeneities in phases and mechanical properties, which may cause unpredictable service failures. Here, we demonstrate a synergistic alloy design approach to overcome this issue in titanium alloys manufactured by laser powder bed fusion.
View Article and Find Full Text PDFAustenitizing temperature is one decisive factor for the mechanical properties of medium carbon martensitic stainless steels (MCMSSs). In the present work, the effects of austenitizing temperature (1000, 1020, 1040 and 1060 °C) on the microstructure and mechanical properties of MCMSSs containing metastable retained austenite (RA) were investigated by means of electron microscopy, X-ray diffraction (XRD), as well as tensile and impact toughness tests. Results suggest that the microstructure including an area fraction of undissolved MC, carbon and chromium content in matrix, prior austenite grain size (PAGS), fraction and composition of RA in studied MCMSSs varies with employed austenitizing temperature.
View Article and Find Full Text PDF