The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance.
View Article and Find Full Text PDFAims: Mounting studies have confirmed that cancer cells reprogram their metabolism during early carcinogenesis to develop many other hallmarks, and demonstrated a relationship between aerobic glycolysis and the occurrence of drug resistance. However, the molecular mechanisms and role in tumor drug resistance of aerobic glycolysis remain unclear.
Main Methods: We analyzed differentially expressed genes (DEGs) at the RNA level between the multi-drug resistance (MDR) leukemia cell line K562/adriamycin (ADM) and its parental, drug-sensitive K562 cell line.
In human leukaemia, resistance to chemotherapy leads to treatment ineffectiveness or failure. Previous studies have indicated that cancers with increased levels of aerobic glycolysis are insensitive to numerous forms of chemotherapy and respond poorly to radiotherapy. Whether glycolysis serves a key role in drug resistance of leukaemia cells remains unclear.
View Article and Find Full Text PDFThere is no cross-resistance between arsenic trioxide and conventional chemotherapeutics. Classical multi-drug resistant (MDR) cells remain sensitive to arsenic trioxide, which may even reverse the drug resistance. Arsenic trioxide is also effective in leukemias/tumors that persist despite conventional cytotoxic or targeted drugs.
View Article and Find Full Text PDF