Publications by authors named "Ziye Song"

Hierarchical self-assembly driven by non-covalent interactions is a prevalent strategy employed by nature to construct sophisticated biomacromolecules, such as proteins. However, the construction of protein-like superstructures that rely on weaker dispersion forces-driven hierarchical assembly remains largely unexplored. Here, we report the first example of dispersion forces driving the high-order assembly of the lanthanide trinuclear circular helicate [HNEt₃]₃[Eu₃(L)₆] (ΔΔΔ-1) into a protein-like lanthanide octamer ((ΔΔΔ-1)₈-2).

View Article and Find Full Text PDF

Chemisorption on organometallic-based adsorbents is crucial for the controlled separation and purification of targeted systems. Herein, oriented 1D NH-CuBDC·HO metal-organic frameworks (MOFs) featuring accessible Cu sites are successfully fabricated by bottom-up interfacial polymerization. The prepared MOFs, as deliberately self-assembled secondary particles, exhibit a visually detectable coordination-responsive characteristic induced by the nucleophilic substitution and competitive coordination of guest molecules.

View Article and Find Full Text PDF

Continuous covalent organic framework (COF) thin membranes have garnered broad concern over the past few years due to their merits of low energy requirements, operational simplicity, ecofriendliness, and high separation efficiency in the application process. This study marks the first instance of fabricating two distinct, self-supporting COF membranes from identical building blocks through solvent modulation. Notably, the precision of the COF membrane's separation capabilities is substantially enhanced by altering the pore alignment from a random to a vertical orientation.

View Article and Find Full Text PDF

Thin-film composite (TFC) membranes have gradually replaced some traditional technologies in the extraction, separation, and concentration of high value-added pharmaceutical ingredients due to their controllable microstructure. Nevertheless, devising solvent-stable, scalable TFC membranes with high permeance and efficient molecule selectivity is urgently needed to improve the separation efficiency in the separation process. Here, we propose phenolphthalein, a commercial acid-base indicator, as an economical monomer for optimizing the micropore structure of selective layers with thickness down to 30 nanometers formed by in situ interfacial reactions.

View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies APPL2, an adaptor protein, as a key factor that decreases in major organs of aged mice, linking it to physiological changes associated with ageing.
  • - Reducing APPL2 levels leads to premature ageing in human umbilical vein endothelial cells and also causes ageing-related symptoms in a model organism, including slower movement and shortened lifespan.
  • - The research highlights the role of autophagy, showing that enhancing it can mitigate age-related issues, while its decline due to low APPL2 levels contributes to the overall ageing process.
View Article and Find Full Text PDF

Among the various types of materials with intrinsic porosity, porous organic cages (POCs) are distinctive as discrete molecules that possess intrinsic cavities and extrinsic channels capable of facilitating molecular sieving. However, the fabrication of POC membranes remains highly challenging due to the weak noncovalent intermolecular interactions and most reported POCs are powders. In this study, we constructed crystalline free-standing porous organic cage membranes by fortifying intermolecular interactions through the induction of intramolecular hydrogen bonds, which was confirmed by single-crystal X-ray analysis.

View Article and Find Full Text PDF

The precise manipulation of the microstructure (pore size, free volume distribution, and connectivity of the free-volume elements), thickness, and mechanical characteristics of membranes holds paramount significance in facilitating the effective utilization of self-standing membranes. In this contribution, the synthesis of two innovative ester-linked covalent-organic framework (COF) membranes is first reported, which are generated through the selection of plant-derived ellagic acid and quercetin phenolic monomers in conjunction with terephthaloyl chloride as a building block. The optimization of the microstructure of these two COF membranes is systematically achieved through the application of three different interfacial electric field systems: electric neutrality, positive electricity, and negative electricity.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional piperazine-based polyamide membranes have a trade-off between selectivity (ability to separate different molecules) and permeance (how fast liquids pass through), which new macrocycle membranes aim to improve.
  • The study introduces three macrocyclic building blocks (2N, 3N, and 4N) to create polyamide membranes with nanoscale pores through interfacial polymerization, showing that the 4N-based membranes outperformed the others in both permeance and molecular weight cutoff.
  • The resulting covalent organic network membranes demonstrated excellent performance in filtering and stability against fouling, making them promising for applications like wastewater treatment and precise molecular separation.
View Article and Find Full Text PDF

Membranes with precisely defined nanostructure are desirable for energy-efficient molecular separations. The emergence of membranes with honeycomb lattice or topological nanopores is of fundamental importance. The tailor-made nanostructure and morphology may have huge potential to resolve the longstanding bottlenecks in membrane science and technology.

View Article and Find Full Text PDF

The induction of CTL responses by vaccines is important to combat infectious diseases and cancer. Biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres and synthetic long peptides are efficiently internalized by professional APCs and prime CTL responses after cross-presentation of Ags on MHC class I molecules. Specifically, they mainly use the cytosolic pathway of cross-presentation that requires endosomal escape, proteasomal processing, and subsequent MHC class I loading of Ags in the endoplasmic reticulum (ER) and/or the endosome.

View Article and Find Full Text PDF

Hydrogen is an important energy carrier for the transition to a carbon-neutral society, the efficient separation and purification of hydrogen from gaseous mixtures is a critical step for the implementation of a hydrogen economy. In this work, graphene oxide (GO) tuned polyimide carbon molecular sieve (CMS) membranes were prepared by carbonization, which show an attractive combination of high permeability, selectivity and stability. The gas sorption isotherms indicate that the gas sorption capability increases with the carbonization temperature and follows the order of PI-GO-1.

View Article and Find Full Text PDF

Highly flexible and robust self-standing covalent organic framework (COF) membranes with rapid preparation are important but technically challenging for achieving precise separation. Herein , a novel imine-based 2D soft covalent organic framework (SCOF) membrane with a large area of 226.9 cm , via ingeniously selecting an aldehyde flexible linker and a trigonal building block, is reported.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how the ratio of log(serum CA125 level) to PCI impacts outcomes in patients with epithelial ovarian cancer undergoing primary debulking surgeries (PDS).
  • It analyzed data from 69 patients treated between 2014 and 2017, finding that this ratio serves as a prognostic factor for overall survival (OS) and is an independent risk factor for successful tumor resection.
  • The study concluded that the log(CA125)/PCI ratio can help predict the resectability of PDS, indicating its potential use in clinical decision-making for ovarian cancer patients.
View Article and Find Full Text PDF

Lard with a substantially reduced cholesterol content through aqueous enzyme extraction is an attractive source of lipid in healthy and nutritious emulsion food product development. The objective of this study was to elucidate the crystallization behavior (4-20 °C) of emulsions prepared from low-cholesterol lard in relation to protein emulsifier (2 and 4% whey protein isolate, WPI) and ultrasound (475 w, 5 min) treatments. The physicochemical properties and fat crystallization pattern of the emulsions were investigated.

View Article and Find Full Text PDF

Cervical cancer is the third leading cause of cancer death among women in less-developed regions. Because of the poor survivorship of patients with advanced disease, finding new biomarkers for prognostic prediction is of great importance. In the current study, mRNA datasets (GSE9750 and GSE63514) were retrieved from Gene Expression Omnibus and was used to identify differentially expressed genes.

View Article and Find Full Text PDF

Background: Cervical cancer is the most common cancer among women in Nepal. The prevalence of human papillomavirus (HPV) 16 and or HPV 18 among women with cervical pre-cancer and cancer is higher than the incidence of HPV in the world population. The population-based epidemiological data of HPV in the general population in most parts of the country remains unknown.

View Article and Find Full Text PDF

Background: Fingolimod efficiently reduces multiple sclerosis (MS) relapse by inhibiting lymphocyte egress from lymph nodes through down-modulation of sphingosine 1-phosphate (S1P) receptors. We aimed to clarify the alterations in peripheral blood T cell subsets associated with MS relapse on fingolimod.

Methods/principal Findings: Blood samples successively collected from 23 relapsing-remitting MS patients before and during fingolimod therapy (0.

View Article and Find Full Text PDF