ACS Appl Mater Interfaces
November 2024
Due to the high heterogeneity and the immunosuppressive microenvironment of tumors, most single antigen tumor vaccines often fail to elicit potent antitumor immune responses in clinical trials, resulting in unsatisfactory therapy effects. Hence, personalized tumor vaccines have become a promising modality for cancer immunotherapy. Here, we have developed a tumor in situ hydrogel vaccine (AH/DA-OR) capable of rapid hemostasis for personalized tumor immunotherapy, composed of dopamine-grafted hyaluronic acid (HA/DA) combined with sodium alginate (ALG), with coloaded oxaliplatin (OXA) and resiquimod (R848).
View Article and Find Full Text PDFExploration (Beijing)
October 2024
Recently, the field of nanomedicine has witnessed substantial advancements in the development of nanocarriers for targeted drug delivery, emerges as promising platforms to enhance therapeutic efficacy and minimize adverse effects associated with conventional chemotherapy. Notably, deformable nanocarriers have garnered considerable attention due to their unique capabilities of size changeable, tumor-specific aggregation, stimuli-triggered disintegration, and morphological transformations. These deformable nanocarriers present significant opportunities for revolutionizing drug delivery strategies, by responding to specific stimuli or environmental cues, enabling achieved various functions at the tumor site, including size-shrinkage nanocarriers enhance drug penetration, aggregative nanocarriers enhance retention effect, disintegrating nanocarriers enable controlled drug release, and shape-changing nanocarriers improve cellular uptake, allowing for personalized treatment approaches and combination therapies.
View Article and Find Full Text PDFThe development of in situ tumor vaccines offers promising prospects for cancer treatment. Nonetheless, the generation of plenary autologous antigens in vivo and their codelivery to DC cells along with adjuvants remains a significant challenge. Herein, we developed an in situ tumor vaccine using a supramolecular nanoparticle/hydrogel composite (ANP/ALCD) and a deformable nanoadjuvant (PPE).
View Article and Find Full Text PDFBackground: Newborn screening (NBS) aims to detect congenital anomalies, and next-generation sequencing (NGS) has shown promise in this aspect. However, the NBS strategy for monogenic inherited diseases in China remains insufficient.
Methods: We developed a NeoEXOME panel comprising 601 genes that are relevant to the Chinese population found through extensive research on available databases.
Efficiently reawakening immune cells, including T cells and macrophages, to eliminate tumor cells is a promising strategy for cancer treatment, but remains a huge challenge nowadays. Herein, a nanoassembly formed by doxorubicin (DOX)-conjugated polyphosphoester (PP-(hDOX)) and CD47-targeting siRNA (siCD47) via electrostatic and π-π stacking interactions, termed as PP-(hDOX&siCD47), was developed to reawaken the T cell and macrophage-mediated anticancer activity. The PP-(hDOX&siCD47) could efficiently blockade antiphagocytic signal by downregulation of CD47 expression to reactive macrophage-mediated anticancer immunotherapy.
View Article and Find Full Text PDFTAL1 T-cell acute lymphoblastic leukemia (T-ALL) is a distinct subtype of leukemia with poor outcomes. Through the cooperation of co-activators, including RUNX1, GATA3, and MYB, the TAL1 oncoprotein extends the immature thymocytes with autonomy and plays an important role in the development of T-ALL. However, this process is not yet well understood.
View Article and Find Full Text PDFCancer nanomedicine treatment aims to achieve highly specific targeting and localization to cancer cells. Coating of nanoparticles with cell membranes endows them with homologous cellular mimicry, enabling nanoparticles to acquire new functions and properties, including homologous targeting and long circulation in vivo, and can enhance internalization by homologous cancer cells. Herein, we fused a human-derived HCT116 colon cancer cell membrane (cM) with a red blood cell membrane (rM) to fabricate an erythrocyte-cancer cell hybrid membrane (hM).
View Article and Find Full Text PDFThe abnormal activation of epidermal growth factor receptor (EGFR) drives the development of non-small cell lung cancer (NSCLC). The EGFR-targeting tyrosine kinase inhibitor osimertinib is frequently used to clinically treat NSCLC and exhibits marked efficacy in patients with NSCLC who have an EGFR mutation. However, free osimertinib administration exhibits an inadequate response in vivo, with only ∼3% patients demonstrating a complete clinical response.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL), a heterogeneous hematological malignancy, is caused by the developmental arrest of normal T-cell progenitors. The development of targeted therapeutic regimens is impeded by poor knowledge of the stage-specific aberrances in this disease. In this study, we performed multi-omics integration analysis, which included mRNA expression, chromatin accessibility, and gene-dependency database analyses, to identify potential stage-specific druggable targets and repositioned drugs for this disease.
View Article and Find Full Text PDFThe passive diffusion performance of nanocarriers results in inefficient drug transport across multiple biological barriers and consequently cancer therapy failure. Here, a magnetically driven amoeba-like nanorobot (amNR) is presented for whole-process active drug transport. The amNR is actively extravasated from blood vessels and penetrated into deep tumor tissue through a magnetically driven deformation effect.
View Article and Find Full Text PDFJ Shanghai Jiaotong Univ Sci
December 2022
In response to the new round of COVID-19 outbreaks since March 2022, universities with high outbreak rates around the country have taken quarantine measures to contain the epidemic. Evidence from previous coronavirus outbreaks has shown that people under quarantine are at risk for mental health disorders. To better understand the impacts of this round of COVID-19 quarantine on domestic college students and their responses, we conducted a systematic survey to assess the stress and anxiety, and to evaluate effective measurements in this population.
View Article and Find Full Text PDFBackground: Neuroblastoma is the most common extracranial solid tumor of childhood, arising from the sympathetic nervous system. High-risk neuroblastoma (HRNB) remains a major therapeutic challenge with low survival rates despite the intensification of therapy. This study aimed to develop a malignant-cell marker gene signature (MMGS) that might serve as a prognostic indicator in HRNB patients.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic lipid accumulation, which can progress to nonalcoholic steatohepatitis (NASH). Histone deacetylase Sirtuin 6 (SIRT6) regulates NAFLD by regulating metabolism-related gene expression, but an extrachromosomal role for SIRT6 in NAFLD development remains elusive. We investigated whether SIRT6 functions on NAFLD in the cytoplasm.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is a malignant hematological tumor with disordered oncogenes/tumor suppressor genes and limited treatments. The potent anti-cancer effects of bromodomain and extra-terminal domain (BET) inhibitors, targeting the key component of super enhancers, in early clinical trials on AML patients, implies the critical role of super enhancers in AML. Here, we review the concept and characteristic of super enhancer, and then summarize the current researches about super enhancers in AML pathogenesis, diagnosis and classification, followed by illustrate the potential super enhancer-related targets and drugs, and propose the future directions of super enhancers in AML.
View Article and Find Full Text PDFDeveloping precise nanomedicines to improve the transport of anticancer drugs into tumor tissue and to the final action site remains a critical challenge. Here, we present a bioorthogonal in situ assembly strategy for prolonged retention of nanomedicines within tumor areas to act as drug depots. After extravasating into the tumor site, the slightly acidic microenvironment induces the exposure of cysteine on the nanoparticle surface, which subsequently undergoes a bioorthogonal reaction with the 2-cyanobenzothiazole group of another neighboring nanoparticle, enabling the formation of micro-sized drug depots to enhance drug retention and enrichment.
View Article and Find Full Text PDFObjective: The prognostic value of tumor size in neuroblastoma (NB) patients has not been fully evaluated. Our purpose is to elucidate the prognostic significance of tumor size in surgery performed on neuroblastoma patients.
Methods: Neuroblastoma patients diagnosed from 2004 to 2015 were selected from the Surveillance, Epidemiology, and End Results Program (SEER) for the study.
Effectively activating macrophages that can engulf cancer cells is a promising immunotherapeutic strategy but remains a major challenge due to the expression of "self" signals (e.g., CD47 molecules) by tumor cells to prevent phagocytosis.
View Article and Find Full Text PDFImmunotherapy has revolutionized the therapeutic modalities of cancer treatment but is severely limited by a low objective response rate and the risk of immune-related side effects. Herein, an injectable supramolecular hydrogel is developed for local delivery of the PPA-1 peptide (a d-peptide antagonist with a high binding affinity to programmed cell death-ligand 1 (PD-L1)) and doxorubicin (DOX). On the one hand, DOX could kill tumor cells directly and also induce immunogenic cell death to provoke the antitumor immune response.
View Article and Find Full Text PDFReactive oxygen species (ROS)-responsive nanocarriers have aroused widespread interest in recent years. On the one hand, a high ROS level has been detected in many types of tumor cells. On the other hand, ROS generation is also induced during photodynamic, sonodynamic, or chemodynamic therapy.
View Article and Find Full Text PDFLocal administration of therapeutic agents with long-term retention capabilities efficiently avoids nonspecific distribution in normal organs with an increased drug concentration in pathological tissue. Herein, we developed an injectable and degradable alginate-calcium (Ca2+) hydrogel for the local administration of corn-like Au/Ag nanorods (NRs) and doxorubicin hydrochloride (DOX·HCl). The immobilized Au/Ag NRs with strong absorbance in the near-infrared II (NIR-II) window efficiently ablated the majority of tumor cells after 1064 nm laser irradiation and triggered the release of DOX to kill residual tumor cells.
View Article and Find Full Text PDFSimultaneously targeting tumor cells and nonmalignant cells represent a more efficient strategy for replacing the traditional method of targeting only tumor cells, and co-delivery nanocarriers have inherent advantages to achieve this goal. However, differential delivery of multiple agents to various types of cell with different spatial distribution patterns remains a large challenge. Herein, we developed a nanocarrier of platinum(IV) prodrug and BLZ-945, BLZ@S-NP/Pt, to differentially target tumor cells and tumor-associated macrophages (TAMs).
View Article and Find Full Text PDFLung cancer has high incidence and mortality rates, in which lung squamous cell carcinoma (LUSC) is a primary type of non-small cell lung carcinoma (NSCLC). The aim of our study was to discover long non-coding RNAs (lncRNAs) associated with diagnose and prognosis for LUSC. RNA sequencing data obtained from LUSC samples were extracted from The Cancer Genome Atlas database (TCGA).
View Article and Find Full Text PDF