Publications by authors named "Zixu Liu"

In recent years, the incidence of ground-glass nodular lung adenocarcinoma has gradually increased. Preoperative evaluation of the tumor invasiveness is very important, but there is a lack of effective methods. Plasma samples of ground-glass nodular lung adenocarcinoma and healthy volunteers were collected.

View Article and Find Full Text PDF

Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin.

View Article and Find Full Text PDF

Vincristine (VCR), as a cytotoxic drug, is used clinically to treat acute lymphatic leukemia and breast cancer, and commonly used clinically as vincristine sulfate (VCRS). However, its clinical use is limited by unpredictable pharmacologic characteristics, a narrow therapeutic index, and neurotoxicity. The pH gradient method was used for active drug loading of VCRS, and the process route mainly includes the preparation of blank liposomes and drug-loaded liposomes.

View Article and Find Full Text PDF

Tumor vaccines have demonstrated a modest response rate, primarily attributed to their inefficient delivery to dendritic cells (DCs), low cross-presentation, DC-intrinsic immunosuppressive signals, and an immunosuppressive tumor microenvironment (TME). Here, draining lymph node (DLN)-targeted and tumor-targeted nanovaccines were proposed to address these limitations, and heterocyclic lipidoid (A18) and polyester (BR647) were synthesized to achieve dual-targeted cancer immunotherapy. Meanwhile, oligo hyaluronic acid (HA) and DMG-PEG-Mannose were incorporated to prepare dual-targeted nanovaccines encapsulated with STAT3 siRNA and model antigens.

View Article and Find Full Text PDF

To avoid the undesired bacterial attachment on polyurethane-based biomedical devices, we designed a class of novel perfluoropolyether-incorporated polyurethanes (PFPU) containing different contents of perfluoropolyether (PFPE) segments. After blending with Ag nanoparticles (AgNPs), a series of bifunctional PFPU/AgNPs composites with bactericidal and anti-adhesion abilities were obtained and correspondingly made into PFPU/AgNPs films (PFPU/Ag-F) using a simple solvent-casting method. Due to its highest hydrophobicity and suitable mechanical properties, PFPU8/Ag-F containing 8 mol% of PFPE content was chosen as the optimized one for the next antibacterial assessment.

View Article and Find Full Text PDF

Intravascular optical coherence tomography is a useful tool to assess stent adherence and dilation, thus guiding percutaneous coronary intervention and minimizing the risk of surgery. However, each pull-back OCT images may contain thousands of stent struts, which are tiny and dense, making manual stent labeling slow and costly for medical resources..

View Article and Find Full Text PDF

Docetaxel (DTX) has become one of the most important cytotoxic drugs to treat cancer; nevertheless, its poor hydrophilicity and non-specific distribution of DTX lead to detrimental side effects. In this article, we devised carboxymethylcellulose (CMC)-conjugated polymeric prodrug micelles (mPEG-CMC-DTX PMs) for DTX delivery. The ester-bonded polymeric prodrug, mPEG-CMC-DTX, was synthesized and exhibited the capacity for self-assembling into polymeric micelles.

View Article and Find Full Text PDF

Interventional therapies are increasingly used in clinical trials for hepatocellular carcinoma (HCC). Sorafenib is the front-line remedy for HCC, however, chemoresistance occurs immutably and affects the effectiveness of treatment. In a previous study, a norcantharidin liposome emulsion hybrid (NLEH) delivery system for HCC was developed.

View Article and Find Full Text PDF

As the only Food and Drug Administration (FDA)-approved dual-encapsulation liposome injection for treating Acute myeloid leukemia (AML), CPX-351 outperforms the standard chemotherapy treatment "DA 7 + 3″ in terms of clinical effectiveness. Although research on dual-loaded liposomes has increased in recent years, little attention has been paid to their preparation, which can affect their quality, efficacy, and safety. This study explored various preparation processes to create the cytarabine/daunorubicin co-loaded liposome (the Cyt/Daun liposome) and eventually settled on two methods: the sequential loading approach, thin film hydration-extrusion-copper ion gradient, and the simultaneous encapsulation technique, copper ion gradient-concentration gradient.

View Article and Find Full Text PDF

Cancer vaccine-based immunotherapy has great potential; however, the vaccines have been hindered by the immunosuppressive tumor microenvironment (TME). In this study, dual-responsive PEG-lipid polyester nanoparticles (PEG BR647-NPs) for tumor-targeted delivery were proposed. PEG BR647-NPs containing the model tumor-associated antigen (TAA) OVA and the signal transduction and activator of transcription 3 () siRNA were delivered to the tumor.

View Article and Find Full Text PDF

Background: Multiple primary lung cancer (MPLC) is becoming increasingly common in clinical practice. Imaging examination is sometimes difficult to differentiate from intrapulmonary metastasis (IM) or single primary lung cancer (SPLC) before surgery. There is a lack of effective blood biomarkers as an auxiliary diagnostic method.

View Article and Find Full Text PDF

The introduction of unnatural chemical moieties into glycosaminoglycans (GAGs) has enormous potential to facilitate studies of the mechanism and application of these critical, widespread molecules. Unnatural -acetylhexosamine analogs were metabolically incorporated into the capsule polysaccharides of and via bacterial metabolism. Targeted metabolic labeled hyaluronan and the precursors of heparin and chondroitin sulfate were obtained.

View Article and Find Full Text PDF

Background: Copper diethyldithiocarbamate (Cu(DDC)) has been demonstrated to possess excellent antitumor activity. However, the extremely poor water solubility of Cu(DDC) bring difficulty for its formulation research. In this study, we aim to develop a novel nanocarrier for Cu(DDC) delivery to overcome this obstacle and enhance antitumor activity.

View Article and Find Full Text PDF

PD-1/L1 checkpoint blockade has gained approval in terms of treating patients suffering from hepatocellular carcinoma (HCC). It should be noted that the PD-1/L1 inhibitor (α-PD-1/L1) has a low overall response rate when used as a single agent. Accordingly, the combination of α-PD-1/L1 and a series of therapies to further increase the response rate has become a major research direction.

View Article and Find Full Text PDF

Background: The lung is one of the most common metastatic sites of malignant tumors. Early detection of pulmonary metastatic carcinoma can effectively reduce relative cancer mortality. Human metabolomics is a qualitative and quantitative study of low-molecular metabolites in the body.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the Negative Bias Temperature Instability (NBTI) effect on 130 nm partially depleted silicon-on-insulator (PDSOI) PMOSFETs, focusing on how it impacts their electrical characteristics and performance under stress conditions.
  • - Results reveal that NBTI results in a negative shift in threshold voltage, reduced drain current, and decreased transconductance; the work also develops a model predicting that a T-Gate PDSOI PMOSFET has a lifespan of about 18.7 years under specific stress conditions.
  • - Additionally, the research finds that T-Gate SOI devices experience greater NBTI degradation compared to floating-body SOI devices, suggesting that the floating-body effect helps mitigate N
View Article and Find Full Text PDF

The old alcohol-aversion drug disulfiram (DSF) has aroused wide attention as a drug repurposing strategy in terms of cancer therapy because of the high antitumor efficacy in combination with copper ion. However, numerous defects of DSF (e.g.

View Article and Find Full Text PDF

Background: Norcantharidin (NCTD) has a certain degree of hydrophilicity and poor lipophilicity, and has some side-effects, including short t, vascular irritation, cardiotoxicity, and nephrotoxicity, which bring difficulties for formulation research. In this study, we aim to develop a novel nanocarrier to improve encapsulation efficiency, increase sterilization stability, and enhance antitumor activity.

Methods: Phospholipid complexes methods were used for increasing the lipophilicity of norcantharidin (NCTD), then NCTD phospholipid complexes were not only loaded in the oil phase and oil-water interface surface, but also encapsulated in phospholipid bilayers to obtain NCTD liposome-emulsion hybrid (NLEH) delivery system.

View Article and Find Full Text PDF

Glycogen branching enzyme (GBE1) is a critical gene that participates in regulating glycogen metabolism. However, the correlations between GBE1 expression and the prognosis and tumor-associated macrophages in lung adenocarcinoma (LUAD) also remain unclear. Herein, we firstly analyzed the expression level of GBE1 in LUAD tissues and adjacent lung tissues The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

Background: CD8+ T cells are one of the central effector cells in the immune microenvironment. CD8+ T cells play a vital role in the development and progression of lung adenocarcinoma (LUAD). This study aimed to explore the key genes related to CD8+ T-cell infiltration in LUAD and to develop a novel prognosis model based on these genes.

View Article and Find Full Text PDF

Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up-regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS).

View Article and Find Full Text PDF

Combination, synergistic chemotherapy with gemcitabine (GEM) and cisplatin (CDDP) is a common strategy, and has been recommended for tumor treatment due to its promoted therapeutic effect and reduced systemic toxicity. However, this process involves the intravenous infusion of GEM prior to that of CDDP, which is inconvenient for patients and staff. Here, a novel hybrid nano-carrier system comprised of micelles encapsulated within PEGylated liposomes is proposed, in order to combine the unique strengths of each component.

View Article and Find Full Text PDF

Valuable polysaccharides are usually produced using wild-type or metabolically-engineered host microbial strains through fermentation. These hosts act as cell factories that convert carbohydrates, such as monosaccharides or starch, into bioactive polysaccharides. It is desirable to develop effective in vivo high-throughput approaches to screen cells that display high-level synthesis of the desired polysaccharides.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) have emerged as regulators of gene expression and play critical regulatory roles in diverse biological functions and diseases, including cancer. In this study, we report the downregulation of LINC01089 in non-small cell lung cancer (NSCLC) samples, relative to adjacent non-tumor tissues, and demonstrate its role in the inhibition of proliferation, migration, and epithelial-mesenchymal transition (EMT) of NSCLC cells. Mechanistic analysis indicates that LINC01089 acts as a sponge for miR-27a, regulating its expression in NSCLC.

View Article and Find Full Text PDF

The oral delivery of macromolecules using nanoparticles is limited by secreted mucus, resulting in low contact or internalization intestinal cells and, thus, both mucus trapping and further low cellular uptake need to be overcome. Here, hydrophilic and electroneutral nanoparticles were developed to overcome mucus trapping and enhance the oral delivery of macromolecules. Mesoporous silica nanoparticles (MSNs) were synthesized and modified with a hydrophilic block polymer (poly(lactic acid)-methoxy poly(ethylene glycol), PLA-PEG), and then an overall electroneutrality and promoted cellular uptake were achieved by sequential modification with cell-penetrating peptides (CPPs).

View Article and Find Full Text PDF