Publications by authors named "Zixing Dong"

2,5-Dimethylpyrazine (2,5-DMP) is important pharmaceutical raw material and food flavoring agent. Recently, engineering microbes to produce 2,5-DMP has become an attractive alternative to chemical synthesis approach. In this study, metabolic engineering strategies were used to optimize the modified Escherichia coli BL21 (DE3) strain for efficient synthesis of 2,5-DMP using L-threonine dehydrogenase (EcTDH) from Escherichia coli BL21, NADH oxidase (EhNOX) from Enterococcus hirae, aminoacetone oxidase (ScAAO) from Streptococcus cristatus and L-threonine transporter protein (EcSstT) from Escherichia coli BL21, respectively.

View Article and Find Full Text PDF

Background: Asthma is a heterogeneous chronic respiratory disease, affecting about 10% of the global population. Cellular senescence is a multifaceted phenomenon defined as the irreversible halt of the cell cycle, commonly referred to as the senescence-associated secretory phenotype. Recent studies suggest that cellular senescence may play a role in asthma.

View Article and Find Full Text PDF

Aspergillus niger has the ability to produce a large variety of proteases, which are of particular importance for protein digestion, intracellular protein turnover, cell signaling, flavour development, extracellular matrix remodeling and microbial defense. However, the A. niger degradome (the full repertoire of peptidases encoded by the A.

View Article and Find Full Text PDF

Glutamate decarboxylase (GAD) has the potential of converting L-glutamate to gamma-aminobutyric acid (GABA), which is an important non-proteinogenic amino acid that has a potential use as food additive or dietary supplement for its physiological functions. A novel pyridoxal 5'-phosphate (PLP)-dependent glutamate decarboxylase (LsGAD) was cloned from GRAS (generally recognized as safe) Lactobacillus senmaizukei by genome mining and efficiently expressed in Escherichia coli BL21. The LsGAD displayed excellent temperature property, pH property and kinetic parameters compared with the probe LbGAD and the other GADs.

View Article and Find Full Text PDF

Acute appendicitis (AA) affects between 7% and 8% of the world population and is one of the most common general surgical emergencies. The concept of seasonal patterns in the incidence of AA remains controversial. Thus, this study aimed to investigate whether meteorological factors are related to variations in the rate of pediatric AA cases at the Children's Hospital in Chongqing, China.

View Article and Find Full Text PDF

The worldwide trend of limiting the use of antibiotic growth promoters (AGPs) in animal production creates challenges for the animal feed industry, thus necessitating the development of effective non-antibiotic alternatives to improve animal performance. Increasing evidence has shown that the growth-promoting effect of AGPs is highly correlated with the reduced activity of bile salt hydrolase (BSH, EC 3.5.

View Article and Find Full Text PDF

Background: Lignocellulosic ethanol could offer a sustainable source to meet the increasing worldwide demand for fuel. However, efficient and simultaneous metabolism of all types of sugars in lignocellulosic hydrolysates by ethanol-producing strains is still a challenge.

Results: An engineered strain Escherichia coli B0013-2021HPA with regulated glucose utilization, which could use all monosaccharides in lignocellulosic hydrolysates except glucose for cell growth and glucose for ethanol production, was constructed.

View Article and Find Full Text PDF

Objectives: To develop a xylose-nonutilizing Escherichia coli strain for ethanol production and xylose recovery.

Results: Xylose-nonutilizing E. coli CICIM B0013-2012 was successfully constructed from E.

View Article and Find Full Text PDF

Owing to its high protein secretion capacity, simple nutritional requirements, and GRAS (generally regarded as safe) status, is widely used as a host for the industrial production of enzymes, antibiotics, and peptides. However, as compared with its close relative , little is known about the physiology and stress responses of . To explore its temperature-stress metabolome, strains ATCC 14580 and B186, with respective optimal growth temperatures of 42°C and 50°C, were cultured at 42°C, 50°C, and 60°C and their corresponding metabolic profiles were determined by gas chromatography/mass spectrometry and multivariate statistical analyses.

View Article and Find Full Text PDF