Publications by authors named "Zixin Mu"

The characterization of the PYL/RCAR ABA receptors in a great deal of plant species has dramatically advanced the study of ABA functions involved in key physiological processes. However, the genes in this family are still unclear in (Goji) plants, one of the well-known economically, medicinally, and ecologically valuable fruit crops. In the present work, 12 homologs of PYL/RCAR ABA receptors were first identified and characterized from (L.

View Article and Find Full Text PDF

Plant−water relations mediated by aquaporins (AQPs) play vital roles in both key plant growth processes and responses to environmental challenges. As a well-known medicinal and edible plant, the harsh natural growth habitat endows Lycium plants with ideal materials for stress biology research. However, the details of their molecular switch for water transport remain unclear.

View Article and Find Full Text PDF

Anthocyanin-derived fleshy fruit pigmentation has become an excellent system for studying the regulatory network underlying fruit ripening and quality. The transcriptional control of anthocyanin biosynthesis by MYB-bHLH-WDR complexes has been well established, but the intermediate signals through which the environmental or developmental cues regulate these transcription factors remain poorly understood. Here we found that nitric oxide (NO) production during Lycium fruit ripening decreased progressively presenting a negative relationship with anthocyanins.

View Article and Find Full Text PDF

Background: Anthocyanins, which are colored pigments, have long been used as food and pharmaceutical ingredients due to their potential health benefits, but the intermediate signals through which environmental or developmental cues regulate anthocyanin biosynthesis remains poorly understood. Fleshy fruits have become a good system for studying the regulation of anthocyanin biosynthesis, and exploring the mechanism underlying pigment metabolism is valuable for controlling fruit ripening.

Results: The present study revealed that ABA accumulated during Lycium fruit ripening, and this accumulation was positively correlated with the anthocyanin contents and the LbNCED1 transcript levels.

View Article and Find Full Text PDF

PYR/PYLs function as ABA receptors and are key regulators during plant drought stress response. Previously we screened drought tolerance of Arabidopsis ABA receptors PYR/PYLs under the control of five different promoters. In this study, we characterized drought stress tolerance of AtPYL5 transgene under the control of one guard cell specific promoter, pGC1.

View Article and Find Full Text PDF

Following publication of the original article [1], a reader spotted that the article appears to have some misplaced/duplicated figures. In particular, Fig. 5a and Fig.

View Article and Find Full Text PDF

From the different functions ABA exerted between the aboveground and belowground, seed and vegetative tissues, primary root and lateral root, stimulating stomatal closure and inhibiting stomatal opening, between young and senescence leaves in stomatal movement, among different cells in plasma membrane water permeability, we addressed the organ-, tissue-, cell-, physiological processes-, and development stage specificities of PYR1/PYL/RCAR ABA receptors. This specificity may reflect the spatio-temporal properties of water potentials as well as the endogenous ABA levels in detail context, which plus the various affinities among this receptor families, resulted in the specificity of the transcripts as well as genes functions. PYR1/PYL/RCAR ABA receptors may integrate the message of ABA resource (local signaling or long distance signaling) and concentration, thus fine-tuning ABA response to environmental- and developmental cues.

View Article and Find Full Text PDF

Background: The different actions of abscisic acid (ABA) in the aboveground and belowground parts of plants suggest the existence of a distinct perception mechanism between these organs. Although characterization of the soluble ABA receptors PYR1/PYL/RCAR as well as core signaling components has greatly advanced our understanding of ABA perception, signal transduction, and responses, the environment-dependent organ-specific sensitivity of plants to ABA is less well understood.

Results: By performing real-time quantitative PCR assays, we comprehensively compared transcriptional differences of core ABA signaling components in response to ABA or osmotic/dehydration stress between maize (Zea mays L.

View Article and Find Full Text PDF

Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production.

View Article and Find Full Text PDF

The C-REPEAT-BINDING FACTOR (CBF) pathway has important roles in plant responses to cold stress. How the CBF genes themselves are activated after cold acclimation remains poorly understood. In this study, we characterized cold tolerance of null mutant of RNA-DIRECTED DNA METHYLATION 4 (RDM4), which encodes a protein that associates with RNA polymerases Pol V and Pol II, and is required for RNA-directed DNA methylation (RdDM) in Arabidopsis.

View Article and Find Full Text PDF

Pyrabactin, an agonist of abscisic acid (ABA), has led to the isolation and characterization of pyrabactin resistance 1/pyrabactin resistance 1-like (PYR1/PYLs) ABA receptors in Arabidopsis, which has well explained ABA-mediated stomatal movement and stress-related gene expression. In addition to inducing stomatal closure and inhibiting transpiration, ABA can also enhance root hydraulic conductivity (Lpr), thus maintaining water balance under water deficiency-related stress, but its molecular mechanism remains unclear. In the present study, the root hydraulic properties of maize seedlings in response to pyrabactin were compared to those caused by ABA.

View Article and Find Full Text PDF