Publications by authors named "Zixi Qin"

Gliomas are highly vascularized malignancies, but current anti-angiogenic treatments have not demonstrated practical improvements in patient survival. Studies have suggested that glioma-derived endothelial cell (GdEC) formed by glioma stem cell (GSC) differentiation may contribute to the failure of this treatment. However, the molecular mechanisms involved in GSC endothelial differentiation remain poorly understood.

View Article and Find Full Text PDF

Unlabelled: Glioma is a highly vascularized tumor of the central nervous system. Angiogenesis plays a predominant role in glioma progression and is considered an important therapeutic target. Our previous study showed that vasorin (VASN), a transmembrane protein, is overexpressed in glioma and promotes angiogenesis; however, the potential mechanism remains unclear.

View Article and Find Full Text PDF

IDH1 mutations frequently occur early in human glioma. While IDH1 mutation has been shown to promote gliomagenesis via DNA and histone methylation, little is known regarding its regulation in antiviral immunity. Here, we discover that IDH1 mutation inhibits virus-induced interferon (IFN) antiviral responses in glioma cells.

View Article and Find Full Text PDF

Immune checkpoint blockade therapies are still ineffective for most patients with colorectal cancer (CRC). Immunogenic cell death (ICD) enables the release of key immunostimulatory signals to drive efficient anti-tumor immunity, which could be used to potentiate the effects of immune checkpoint inhibitors. Here, we showed that inhibition of valosin-containing protein (VCP) elicits ICD in CRC.

View Article and Find Full Text PDF

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the deadliest form of brain cancer. It is a highly angiogenic and immunosuppressive malignancy. Although immune checkpoint blockade therapies have revolutionized treatment for many types of cancer, their therapeutic efficacy in GBM has been far less than expected or even ineffective.

View Article and Find Full Text PDF

Glioma is the most common primary brain tumor. Glioma stem cells (GSCs) are the origin of gliomagenesis and may develop from normal neural progenitor cells (NPCs). However, how neoplastic transformation occurs in normal NPCs and the role of the Ras/Raf/MAPK pathway in NPC transformation is unclear.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide with a low 5‑year survival rate due to the lack of effective therapeutic strategies. Accumulating evidence has indicated that maternal embryonic leucine zipper kinase (MELK) is highly expressed in several tumors and associated with tumor development. However, the biological effects of MELK in ESCC remain unknown.

View Article and Find Full Text PDF

Accumulating evidence suggests that a subpopulation of stem-cell-like tumor cells in glioma (GSCs) is the major factor accounting for intratumoral heterogeneity and acquired chemotherapeutic resistance. Therefore, understanding intratumoral heterogeneity of GSCs may help develop more effective treatments against this malignancy. However, the study of GSCs' heterogeneity is highly challenging because tumor stem cells are rare.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the therapeutic effects of tetrahydropalmatine (Tet) on disseminated intravascular coagulation (DIC) by exploring the role of Tet using a lipopolysaccharide (LPS)-induced DIC model. We established a mouse DIC model by injecting LPS. Hematoxylin-eosin (HE) staining was performed to detect liver and kidney damage.

View Article and Find Full Text PDF

Oncolytic virotherapy is a promising therapeutic strategy that uses replication-competent viruses to selectively destroy malignancies. However, the therapeutic effect of certain oncolytic viruses (OVs) varies among cancer patients. Thus, it is necessary to overcome resistance to OVs through rationally designed combination strategies.

View Article and Find Full Text PDF

ClC-3 is a type of chloride channel that has multiple functions in tumorigenesis and tumor growth, and can be blocked by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). In the present study, we found that DIDS inhibited the proliferation of Hep3B hepatocellular carcinoma (HCC) cells in a concentration-dependent manner. More in-depth research demonstrated that DIDS downregulated the protein expression levels of cyclin D1 and cyclin E, which are key proteins of the G1 phase.

View Article and Find Full Text PDF

Key Points: Cardiospheres (CSps) are a promising new form of cardiac stem cells with advantage over other stem cells for myocardial regeneration, but direct implantation of CSps by conventional routes has been limited due to potential embolism. We have implanted CSps into the pericardial cavity and systematically demonstrated its efficacy regarding myocardial infarction. Stem cell potency and cell viability can be optimized in vitro prior to implantation by pre-conditioning CSps with pericardial fluid and hydrogel packing.

View Article and Find Full Text PDF

Unlabelled: Cell sheet techniques offer a promising future for myocardial infarction (MI) therapy; however, insufficient nutrition supply remains the major limitation in maintaining stem cell bioactivity in vitro. In order to enhance cell sheet mechanical strength and bioactivity, a decellularized porcine pericardium (DPP) scaffold was prepared by the phospholipase A2 method, and aspartic acid was used as a spacer arm to improve the vascular endothelial growth factor crosslink efficiency on the DPP scaffold. Based on this scaffold, multilayered bone marrow mesenchymal stem cell sheets were rapidly constructed, using RAD16-I peptide hydrogel as a temporary 3D scaffold, and cell sheets were cultured in either the 3D-dynamic system (DCcs) or the traditional static condition (SCcs).

View Article and Find Full Text PDF

Context: Endotoxins including lipopolysaccharide (LPS) could cause endotoxemia which often results in excessive inflammation, organ dysfunction, sepsis, disseminated intravascular coagulation (DIC) or even death. Previously, a novel fibrinogenase (FII) showed protective effects on LPS-induced DIC via activating protein C and suppressing inflammatory cytokines.

Objective: To evaluate whether FII has protective effect on LPS-induced endotoxemia in mice and learn about the role of NF-κB pathway in TNF-α producing process.

View Article and Find Full Text PDF