The emergence of myelinating oligodendrocytes represents a pivotal developmental milestone in vertebrates, given their capacity to ensheath axons and facilitate the swift conduction of action potentials. It is widely accepted that cortical oligodendrocyte progenitor cells (OPCs) arise from medial ganglionic eminence (MGE), lateral/caudal ganglionic eminence (LGE/CGE), and cortical radial glial cells (RGCs). Here, we used two different fate mapping strategies to challenge the established notion that the LGE generates cortical OPCs.
View Article and Find Full Text PDFAiming at the complex strata, lost circulation often occurs. and lost circulation control becomes a difficult issue. A drilling fluid loss accident delays the drilling progress and even causes major economic losses.
View Article and Find Full Text PDFThe formation of angulon, stemming from the rotor (molecule or impurity), rotating in the quantum many-body field, adds a new member to the quasi-particles' family and has aroused intense interest in multiple research fields. However, the analysis of the coupling strength between the rotor and its hosting environment remains a challenging task, both in theory and experiment. Here, we develop the all-coupling theory of the angulon by introducing a unitary transformation, where the renormalization of the rotational constants for different molecules in the helium nanodroplets is reproduced, getting excellent agreement with the experimental data collected during the past decades.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2023
The systematical analysis for varieties of defects with different depths and lattice relaxation strengths in metal halide perovskites (MHPs) is a challenging task. Here, we study the energy shifts of the full-configuration defects due to the polaron effect based on the all-coupling variational method in MHPs, where these polaron states are formed stemming from different defect species coupling with the longitudinal optical phonon modes via Fro¨hlich mechanism. We find that the polaron effect results in defect levels varying from tens to several hundreds of meV, which are very close to the correction of defect levels due to the defect-polaron effect, especially for these defects migration proved in the recent experiments in MHPs.
View Article and Find Full Text PDFFront Cell Dev Biol
August 2022
The striatum is primarily composed of two types of medium spiny neurons (MSNs) expressing either D1- or D2-type dopamine receptors. However, the fate determination of these two types of neurons is not fully understood. Here, we found that D1 MSNs undergo fate switching to D2 MSNs in the absence of .
View Article and Find Full Text PDFThe striatum is the main input structure of the basal ganglia, receiving information from the cortex and the thalamus and consisting of D1- and D2- medium spiny neurons (MSNs). D1-MSNs and D2-MSNs are essential for motor control and cognitive behaviors and have implications in Parkinson's Disease. In the present study, we demonstrated that Sp9-positive progenitors produced both D1-MSNs and D2-MSNs and that Sp9 expression was rapidly downregulated in postmitotic D1-MSNs.
View Article and Find Full Text PDFThe self-trapped state (STS) of the interlayer exciton (IX) has aroused enormous interest owing to its significant impact on the fundamental properties of the van der Waals heterostructures (vdWHs). Nevertheless, the microscopic mechanisms of STS are still controversial. Herein, we study the corrections of the binding energies of the IXs stemming from the exciton-interface optical phonon coupling in four kinds of vdWHs and find that these IXs are in the STS for the appropriate ratio of the electron and hole effective masses.
View Article and Find Full Text PDFThe striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2021
Quantum defects have been shown to play an essential role in nonradiative recombination in metal halide perovskites (MHPs). Nonetheless, the processes of charge transfer assisted by defects are still ambiguous. Herein, we theoretically study the nonradiative multiphonon processes among different types of quantum defects in MHPs using Markvart's model for the induced mechanisms of electron-electron and electron-phonon interactions.
View Article and Find Full Text PDFWe propose a theoretical model for studying the effective velocities of polaron spin states in monolayer transition metal dichalcogenides (TMDS) on the substrate. It is found that the effective velocity of polaron shows the splitting with different magnitudes due to the Rashba spin-orbit coupling, which results in the reversed distribution of the effective velocities of polaron spin states. Moreover, the reversed points depend on the truncated wave-vector of optical phonon and can be modulated by the polarity of substrate and the internal distance between monolayer TMDS and substrate.
View Article and Find Full Text PDFSpecification of the progenitors' regional identity is a pivotal step during development of the cerebral cortex and basal ganglia. The molecular mechanisms underlying progenitor regionalization, however, are poorly understood. Here we showed that the transcription factor Vax1 was highly expressed in the developing subpallium.
View Article and Find Full Text PDFThe striatum is structurally highly diverse, and its organ functionality critically depends on normal embryonic development. Although several studies have been conducted on the gene functional changes that occur during striatal development, a system-wide analysis of the underlying molecular changes is lacking. Here, we present a comprehensive transcriptome profile that allows us to explore the trajectory of striatal development and identify the correlation between the striatal development and Huntington's disease (HD).
View Article and Find Full Text PDFMouse cortical radial glial cells (RGCs) are primary neural stem cells that give rise to cortical oligodendrocytes, astrocytes, and olfactory bulb (OB) GABAergic interneurons in late embryogenesis. There are fundamental gaps in understanding how these diverse cell subtypes are generated. Here, by combining single-cell RNA-Seq with intersectional lineage analyses, we show that beginning at around E16.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2021
Quantum defects are essential to understand the non-radiative recombination processes in metal halide perovskites-based photovoltaic devices, in which Huang-Rhys factor, reflecting the coupling strength between the charge carrier and optical phonons, plays a key role in determining the non-radiative recombination via multiphonon processes. Herein, we theoretically present multiphonon Raman scattering intermediated by defects arising from the charge carrier of defect coupled with the longitudinal optical (LO) phonon in the deformation potential and Fröhlich mechanisms, respectively. We find that the Raman scattering shows multiple LO phonon overtones at equal interval LO phonons, where Huang-Rhys factor could be evaluated by the order of the strongest overtone.
View Article and Find Full Text PDFJ Phys Condens Matter
July 2020
We study the infrared optical absorption of magnetopolaron resonance states in graphene in the strong magnetic field based on the Huybrechts's model, in which polaron states are formed due to the strong coupling between electrons and surface optical (SO) phonons induced by the polar substrate. We propose the special magnetopolaron states1/2(|1〉e±|1〉ph), namely, the superposition states between one SO phonon and the first-excited Landau level, which split into two branches of coupling modes and give rise to two optical absorption peaks with different intensities. Moreover, their intensities can be sensitively modulated by the magnetic field, the truncated wave-vector of SO phonon, polarity of substrate and internal distance between graphene and substrate.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2017
We theoretically study the bandgap modulation in monolayer transition metal dichalcogenides (TMDs) originating from the carrier-optical phonon coupling in the Fröhlich polaron model, in which both of the surface optical phonons modes induced by the polar substrate and the intrinsic longitudinal optical phonons modes have been taken into account. We find that the modulated magnitude of the bandgap is in the range of 100-500 meV by altering different polar substrates and tuning the internal distance between TMDs and polar substrate. The large tunability of the bandgap not only provides a possible explanation for the experimental measurements regarding the dielectric environmental sensitivity of the bandgap, but also holds promise for potential applications in optoelectronics and photovoltaics.
View Article and Find Full Text PDFIn the frame of Huang-Rhys's lattice relaxation model, we theoretically investigate the electron relaxation assisted by optical phonon resonance scattering among Landau levels with spin-conserving and spin-flip processes in graphene. We not only consider the longitudinal optical (LO) phonon scattering, but also the surface optical (SO) phonon scattering induced by the polar substrate under the graphene. The relaxation rate displays a Gaussian distribution by considering the effect of lattice relaxation that arises from the electron-deformation potential acoustic phonon interaction.
View Article and Find Full Text PDFWe investigate the n = 0 Landau level (LL) in monolayer graphene with high magnetic field. We find that the energy gap is opened in the n = 0 LL by the magnetic-field-dependent lattice relaxation originating from the interactions between the electrons (holes) and longitudinal-deformation-acoustic phonon. Both the linear and square-foot dependence of the energy gap on the magnetic field are obtained depending on the choice of the Debye cut-off wave number for the acoustic phonon.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2012
The magnetopolaron is formed via electron-acoustic deformation phonon coupling in the presence of a magnetic field in monolayer graphene. We find that an energy gap (EG) is opened due to the electron-phonon coupling. Both linear and square-root forms for the dependence of the EG on the magnetic field are obtained, which are in agreement with experimental measurements.
View Article and Find Full Text PDFJ Phys Condens Matter
June 2011
We theoretically investigate the intraband relaxation of quantum dots in the terahertz regime due to two acoustic phonon scattering by applying a lattice relaxation approach based on the deformation potential coupling between electrons and acoustic phonons. In particular, we find that the relaxation time depends strongly on the ratio of two acoustic phonons. The influences of the energy separation between the ground and first excited state, the quantum dot height, and the lattice temperature on the relaxation time are also discussed.
View Article and Find Full Text PDF