Background: Rapid and on-board elemental analysis on the mineral deposits taken from the deep seabed are of great importance for the deep-sea mineral resource survey. Traditional geochemical tools are often time-consuming that require transferring the samples from the vessel to laboratory, therefore make a quite long time for acquiring the information of the mineral deposits after taking them from the deep seabed. There is a need to develop a rapid and environmentally friendly method, which is more important for the on-board mineral analysis during the deep-sea mineral resource survey.
View Article and Find Full Text PDFTo examine the short-term effects of biochar on the partial-denitrification anammox (PD/A) process, the adsorption kinetics, nitrogen degradation, electron transfer properties, and microbial community succession of wastewater treatment systems with and without biochar added were monitored and characterized. The results showed that biochar increased nitrate reduction rates, which enhanced total nitrogen (TN) removal of the system by about 10%. The findings attributed improved TN removal to biochar's influence in accelerating electron transfer rather than its adsorption properties.
View Article and Find Full Text PDFSingle-stage partial nitration and anammox (PN/A) process was achieved in a sequencing batch reactor (SBR) using a submerged dynamic membrane (DM) in this study. The reactor was stably operated for 200 days, and the nitrogen removal efficiency (NRE) was sustained at 70.3 ± 7.
View Article and Find Full Text PDF