Publications by authors named "Ziwang Zhao"

Thermocatalytic decomposition is an efficient purification technology that is potentially applicable to degrading chemical warfare agents and industrial toxic gases. In particular, ZrO has attracted attention as a catalyst for the thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), which is a simulant of the nerve gas sarin. However, the influence of the crystal phase and morphology on the catalytic performance of ZrO requires further exploration.

View Article and Find Full Text PDF

Cyanide gas is highly toxic and volatile and is among the most typical toxic and harmful pollutants to human health and the environment found in industrial waste gas. In the military context, cyanide gas has been used as a systemic toxic agent. In this paper, we review cyanide gas elimination methods, focusing on adsorption and catalysis approaches.

View Article and Find Full Text PDF

Some studies have shown that contaminants can be transferred between floors and the soles, and there are few studies on pollutant propagation caused by human walking in real-life situations. This study explored the propagation and diffusion law of ground pollutants from rubber soles to poly vinyl chloride (PVC) floor during indoor walking through employing a fluorescent solution as a simulant. The footprint decay () and transfer efficiency () of the fluorescent solution transferred from the sole to the indoor floor during walking were analyzed based on the fluorescent footprint imaging.

View Article and Find Full Text PDF

Iron-bearing clay minerals and arsenic commonly coexist in soils and sediments. Redox oscillation from anoxic to oxic conditions can result in structural Fe(II) oxidation in clay minerals. However, the role of structural Fe(II) oxidation in clay minerals on arsenic immobilization is still unclear.

View Article and Find Full Text PDF

Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site.

View Article and Find Full Text PDF

The redox state of arsenic controls its toxicity and mobility in the subsurface environment. Understanding the redox reactions of arsenic is particularly important for addressing its environmental behavior. Clay minerals are commonly found in soils and sediments, which are an important host for arsenic.

View Article and Find Full Text PDF

Clay minerals are an important host for arsenic in many arsenic-affected areas. The role of bioreduction of structural Fe(III) in clay minerals in the mobilization of arsenic from clay minerals, however, still remains unclear. In this study, Fe(III) reducing bacterium, As(V) reducing bacterium, and Fe(III)-As(V) reducing bacterium were employed to investigate the possible bioreduction pathways for arsenic release from Nontronite NAu-2.

View Article and Find Full Text PDF

Bioreduction of hexavalent chromium (Cr(VI)) to sparingly soluble trivalent chromium (Cr(III)) is a strategy for the remediation of Cr(VI) contaminated sites. However, its application is limited due to the slow bioreduction process. Here we explored the potential synergistic enhancement of iron(III) minerals (nontronite NAu-2, ferrihydrite, and goethite) and electron shuttle anthraquinone-2,6-disulfonate (AQDS) on the bioreduction of Cr(VI) by Shewanella oneidensis MR-1.

View Article and Find Full Text PDF