Background Aims: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs.
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), sparked an international debate on effective ways to prevent and treat the virus. Specifically, there were many varying opinions on the use of ivermectin (IVM) throughout the world, with minimal research to support either side. IVM is an FDA-approved antiparasitic drug that was discovered in the 1970s and was found to show antiviral activity.
View Article and Find Full Text PDFProtein hydrolysates are one of the most valuable products that can be obtained from lipid-extracted microalgae (LEA). The advantages of protein hydrolysates over other protein products encompass enhanced solubility, digestibility, and potential bioactivity. The development of an economically feasible process to produce protein hydrolysates depends on maximizing the recovery of hydrolyzed native protein from the lipid-extracted algal biomass and subsequent fractionation of hydrolyzed protein slurry.
View Article and Find Full Text PDFA novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of the COVID-19 pandemic that originated in China in December 2019. Although extensive research has been performed on SARS-CoV-2, the binding behavior of spike (S) protein and receptor binding domain (RBD) of SARS-CoV-2 at different environmental conditions have yet to be studied. The objective of this study is to investigate the effect of temperature, fatty acids, ions, and protein concentration on the binding behavior and rates of association and dissociation between the S protein and RBD of SARS-CoV-2 and the hydrophobic aminopropylsilane (APS) biosensors using biolayer interferometry (BLI) validated with molecular dynamics simulation.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy.
View Article and Find Full Text PDFThe ongoing evolution of SARS-CoV-2 into more easily transmissible and infectious variants has sparked concern over the continued effectiveness of existing therapeutic antibodies and vaccines. Hence, together with increased genomic surveillance, methods to rapidly develop and assess effective interventions are critically needed. Here we report the discovery of SARS-CoV-2 neutralizing antibodies isolated from COVID-19 patients using a high-throughput platform.
View Article and Find Full Text PDFThis paper provides the data collected from screening chromatographic resins for their ability to bind and purify recombinant human thioredoxin from lysate. This data was used by "Capture chromatography with mixed-mode resins: A case study with recombinant human thioredoxin from Escherichia coli" [1] to determine the optimal resin to use as a capture step to initiate downstream processing of thioredoxin. Five chromatography resins were screened using a 96-well filter plate to experiment on a wide range of pH and conductivity conditions in a shorter amount of time while saving on materials.
View Article and Find Full Text PDFPlants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms.
View Article and Find Full Text PDFCorrect folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN), a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, , to produce phosphorylated recombinant OPN in its chloroplast is investigated.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2014
The corn grain biofactory was used to produce Cel7A, an exo-cellulase (cellobiohydrolase I) from Hypocrea jecorina. The enzymatic activity on small molecule substrates was equivalent to its fungal counterpart. The corn grain-derived enzyme is glycosylated and 6 kDa smaller than the native fungal protein, likely due to more sugars added in the glycosylation of the fungal enzyme.
View Article and Find Full Text PDFThis study evaluates the effect of polymer molecular weight and charge density, algogenic organic matter (AOM), and salt concentration on harvesting efficiency of marine microalgae. Aluminum chloride (AlCl3), chitosan, and five synthetic cationic polymers of different molecular weights and charge density levels were used as flocculation agents. Polymer flocculation of marine microalgae was most efficient when using the highest charge density polymer (FO4990).
View Article and Find Full Text PDFProcess variables affecting harvesting efficiency of Nannochloris oculata by AlCl(3) flocculation such as, cell density, ionic strength, coagulant dosage, media pH, and cell surface charge were investigated. Initial cell density and coagulant dosage had a significant effect on the removal efficiency; however, levels of ionic strength tested were not significant. Best flocculation conditions of investigated variables were: 0.
View Article and Find Full Text PDFPlants are becoming commercially acceptable for recombinant protein production for human therapeutics, vaccine antigens, industrial enzymes, and nutraceuticals. Recently, significant advances in expression, protein glycosylation, and gene-to-product development time have been achieved. Safety and regulatory concerns for open-field production systems have also been addressed by using contained systems to grow transgenic plants.
View Article and Find Full Text PDFHuman lysozyme and hen egg-white lysozyme have antibacterial, antiviral, and antifungal properties with numerous potential commercial applications. Currently, hen egg-white lysozyme dominates low cost applications but the recent high-level expression of human lysozyme in rice could provide an economical source of lysozyme. This work compares human lysozyme and hen egg-white lysozyme adsorption to the cation exchange resin, SP-Sepharose FF, and the effect of rice extract components on lysozyme purification.
View Article and Find Full Text PDFTransgenic Lemna minor has been used successfully to produce several biotherapeutic proteins. For plant-produced mAbs specifically, the cost of protein A capture step is critical as the economic benefits of plant production systems could be erased if the downstream processing ends up being expensive. To avoid potential modification of mAb or fouling of expensive protein A resins, a rapid and efficient removal of phenolics from plant extracts is desirable.
View Article and Find Full Text PDFProducing economically competitive recombinant human lysozyme from transgenic rice demands an inexpensive purification process for nonpharmaceutical applications. Human lysozyme is a basic protein, and thus, cation exchange chromatography was the selected method for lysozyme purification. Similar to other protein production systems, the identification of critical impurities in the rice extract was important for the development of an efficient purification process.
View Article and Find Full Text PDFSeveral pharmaceutical protein products made in transgenic plant hosts are advancing through clinical trials. Plant hosts present a different set of impurities from which the proteins must be purified compared to other expression hosts such as mammalian cells. In this work, phenolic compounds present in extracts of monoclonal antibody (mAb)-expressing Lemna minor were examined.
View Article and Find Full Text PDFThe availability of foods low in sugar content yet high in flavour is critically important to millions of individuals conscious of carbohydrate intake for diabetic or dietetic purposes. Brazzein is a sweet protein occurring naturally in a tropical plant that is impractical to produce economically on a large scale, thus limiting its availability for food products. We report here the use of a maize expression system for the production of this naturally sweet protein.
View Article and Find Full Text PDFHuman lysozyme has numerous potential therapeutic applications to a broad spectrum of human diseases. This glycosidic enzyme is present in tears, saliva, nasal secretions, and milk--sources not amendable for commercial development. Recently, a high expression level of recombinant human lysozyme (0.
View Article and Find Full Text PDFIn this paper, we show that recombinant human lactoferrin (rhLF) has been stably expressed at 0.5% brown rice flour weight for nine generations. Process development indicates that rhLF can be efficiently extracted from rice flour in 20 mM phosphate buffer (pH 7.
View Article and Find Full Text PDFThe tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells.
View Article and Find Full Text PDFCurr Opin Biotechnol
October 2004
The search for inexpensive production systems capable of producing large quantities of recombinant protein has resulted in the development of new technology platforms based on transgenic plants and animals. Over the past decade, these transgenic systems have been used to produce several products and potential therapeutic proteins. Improvements continue to be made, not only in how the proteins are expressed but also in how the end products are obtained.
View Article and Find Full Text PDFThe past 5 years have seen the commercialization of two recombinant protein products from transgenic plants, and many recombinant therapeutic proteins produced in plants are currently undergoing development. The emergence of plants as an alternative production host has brought new challenges and opportunities to downstream processing efforts. Plant hosts contain a unique set of matrix contaminants (proteins, oils, phenolic compounds, etc.
View Article and Find Full Text PDFAqueous extraction kinetics of recombinant beta-glucuronidase (rGUS) from transgenic canola (Brassica napus) was investigated in terms of the particle size and microstructural characteristics resulting from canola seed processing. The canola had been transformed to express recombinant GUS intracellulary in the seed, and electron microscopy showed that the cells are distributed among (1) disrupted cells in a thin layer at or adjacent to the particle surface, (2) disrupted cells within the interior, and (3) intact cells within the interior. A simple compartmental model containing two extractable pools and a third nonextractable pool fitted the batch extraction results very well.
View Article and Find Full Text PDF