Heat shock protein 90 (Hsp90) and topoisomerase IIα (TopoIIα) are members of the GHKL protein superfamily, both with clinically validated roles as anticancer drug targets. We report the discovery of the first class of dual inhibitors targeting the ATP-binding site of TopoIIα and the C-terminal domain of Hsp90, displaying potent cancer growth inhibition both in vitro and in vivo. Initially, a known TopoIIα inhibitor, compound 3, was shown to bind to the C-terminal domain of Hsp90, but not to its ATP-binding N-terminal domain.
View Article and Find Full Text PDFDue to their impact on several oncogenic client proteins, the Hsp90 family of chaperones has been widely studied for the development of potential anticancer agents. Although several Hsp90 inhibitors have entered clinical trials, most were unsuccessful because they induced a heat shock response (HSR). This issue can be circumvented by using isoform-selective inhibitors, but the high similarity in the ATP-binding sites between the isoforms presents a challenge.
View Article and Find Full Text PDFThe interaction between heat shock protein 90 (Hsp90) and Hsp90 co-chaperone cell-division cycle 37 (Cdc37) is crucial for the folding and maturation of several oncogenic proteins, particularly protein kinases. This makes the inhibition of this protein-protein interaction (PPI) an interesting target for developing new anticancer compounds. However, due to the large interaction surface, developing PPI inhibitors is challenging.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) remains a treatment challenge and requires innovative therapies. Hsp90, crucial for the stability of numerous oncogenic proteins, has emerged as a promising therapeutic target. In this study, we present the optimization of the Hsp90 C-terminal domain (CTD) inhibitor .
View Article and Find Full Text PDFThe development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer.
View Article and Find Full Text PDFATP-competitive inhibitors of human DNA topoisomerase II show potential for becoming the successors of topoisomerase II poisons, the clinically successful anticancer drugs. Based on our recent screening hits, we designed, synthesized and biologically evaluated new, improved series of N-phenylpyrrolamide DNA topoisomerase II inhibitors. Six structural classes were prepared to systematically explore the chemical space of N-phenylpyrrolamide based inhibitors.
View Article and Find Full Text PDFEwing sarcoma is the second most prevalent paediatric malignant bone tumour. In most cases, it is driven by the fusion oncoprotein EWS::FLI1, which acts as an aberrant transcription factor and dysregulates gene expression. EWS::FLI1 and a large number of downstream dysregulated proteins are Hsp90 client proteins, making Hsp90 an attractive target for the treatment of Ewing sarcoma.
View Article and Find Full Text PDFWe describe an efficient catalytic strategy for enantio- and diastereoselective synthesis of homochiral β-CF, β-SCF, and β-OCF benzylic alcohols. The approach is based on dynamic kinetic resolution (DKR) with Noyori-Ikariya asymmetric transfer hydrogenation leading to simultaneous construction of two contiguous stereogenic centers with up to 99.9% ee, up to 99.
View Article and Find Full Text PDFHsp90 is a promising target for the development of novel agents for cancer treatment. The N-terminal Hsp90 inhibitors have several therapeutic limitations, the most important of which is the induction of heat shock response, which can be circumvented by targeting the allosteric binding site on the C-terminal domain (CTD) of Hsp90. In the absence of an Hsp90-CTD inhibitor co-crystal structure, the use of structure-based design approaches for the Hsp90 CTD is difficult and the structural diversity of Hsp90 CTD inhibitors is limited.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is a chaperone responsible for the maturation of many cancer-related proteins, and is therefore an important target for the design of new anticancer agents. Several Hsp90 N-terminal domain inhibitors have been evaluated in clinical trials, but none have been approved as cancer therapies. This is partly due to induction of the heat shock response, which can be avoided using Hsp90 C-terminal-domain (CTD) inhibition.
View Article and Find Full Text PDFHsp90 C-terminal domain (CTD) inhibitors are promising novel agents for cancer treatment, as they do not induce the heat shock response associated with Hsp90 N-terminal inhibitors. One challenge associated with CTD inhibitors is the lack of a co-crystallized complex, requiring the use of predicted allosteric apo pocket, limiting structure-based (SB) design approaches. To address this, a unique approach that enables the derivation and analysis of interactions between ligands and proteins from molecular dynamics (MD) trajectories was used to derive pharmacophore models for virtual screening (VS) and identify suitable binding sites for SB design.
View Article and Find Full Text PDF