Publications by authors named "Zitouni Dya"

PelviNet introduces a groundbreaking multi-agent convolutional network architecture tailored for enhancing pelvic image registration. This innovative framework leverages shared convolutional layers, enabling synchronized learning among agents and ensuring an exhaustive analysis of intricate 3D pelvic structures. The architecture combines max pooling, parametric ReLU activations, and agent-specific layers to optimize both individual and collective decision-making processes.

View Article and Find Full Text PDF

The Medical VDM is an approach for generating medical images that employs variational diffusion models (VDMs) to smooth images while preserving essential features, including edges. The primary goal of the Medical VDM is to enhance the accuracy and reliability of medical image generation. In this paper, we present a comprehensive description of the Medical VDM approach and its mathematical foundation, as well as experimental findings that showcase its efficacy in generating high-quality medical images that accurately reflect the underlying anatomy and physiology.

View Article and Find Full Text PDF