Due to the highly environment-dependent biodegradation and uncontrolled degradation period, the long-run feasibility and effectiveness of biodegradable polymers are extensively questioned to solve plastics waste accumulation and pollution problems. This work physically incorporated lipase PS from Burkholderia cepacian on cellulose nanocrystals (CNC) and embedded it in polycaprolactone (PCL) to construct stable and controllable interfacial microenvironment between CNC and PCL for the reinforcement and controllable self-driven biodegradation. The physical adsorption of lipase PS on CNC was studied by monitoring the surface charge and particle size.
View Article and Find Full Text PDFRandom-pattern skin flap replantation is commonly used to repair skin defects during plastic and reconstructive surgery. However, flap necrosis due to ischemia and ischemia-reperfusion injury limits clinical applications. Betulinic acid, a plant-derived pentacyclic triterpene, may facilitate flap survival.
View Article and Find Full Text PDFChitosan microspheres modified by 2-pyridinecarboxaldehyde were prepared and used in the construction of a heterogeneous catalyst loaded with nano-Cu prepared by a reduction reaction. The chemical structure of the catalyst was investigated by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). Under mild conditions, such as no ligand at room temperature, the catalyst was successfully applied to catalyze the borylation of α,β-unsaturated receptors in a water-methanol medium, yielding 17%-100% of the corresponding -hydroxy product.
View Article and Find Full Text PDF