Publications by authors named "Zitong Shao"

Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug.

View Article and Find Full Text PDF

Drought has a devastating impact, presenting a formidable challenge to agricultural productivity and global food security. Among the numerous ABC transporter proteins found in plants, the ABCG transporters play a crucial role in plant responses to abiotic stress. In Medicago sativa, the function of ABCG transporters remains elusive.

View Article and Find Full Text PDF

Multidrug-resistant tuberculosis (MDR-TB) has posed a serious threat to global public health, and antimicrobial peptides (AMPs) have emerged to be promising candidates to tackle this deadly infectious disease. Previous study has suggested that two AMPs, namely D-LAK120-A and D-LAK120-HP13, can potentiate the effect of isoniazid (INH) against mycobacteria. In this study, the strategy of combining INH and D-LAK peptide as a dry powder formulation for inhalation was explored.

View Article and Find Full Text PDF

Glycoside hydrolase family 1 (GH1) β-glucosidases (BGLUs), are encoded by a large number of genes, which participate in the development and stress response of plants, particularly under biotic and abiotic stresses through the activation of phytohormones. However, there are few studies systematically analyzing stress or hormone-responsive BGLU genes in alfalfa. In this study, a total of 179 BGLU genes of the glycoside hydrolase family 1 were identified in the genome of alfalfa, and then were classified into five distinct clusters.

View Article and Find Full Text PDF

Introduction: The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria.

View Article and Find Full Text PDF

Whilst 10-200 nm polymeric nanoparticles hold enormous medical potential, successful clinical translation remains scarce. There is an inadequate understanding of how these nanoparticles could be fabricated with consistent particle architecture in this size range, as well as their corresponding biological performance. We seek to fill this important knowledge gap by employing Design of Experiment (DoE) to examine critical formulation and processing parameters of cholecalciferol (VitD3)-loaded nanoparticles by flash nanoprecipitation (FNP).

View Article and Find Full Text PDF

Multi-drug-resistant tuberculosis (MDR-TB) is a huge public health problem. The treatment regimen of MDR-TB requires prolonged chemotherapy with multiple drugs including second-line anti-TB agents associated with severe adverse effects. Capreomycin, a polypeptide antibiotic, is the first choice of second-line anti-TB drugs in MDR-TB therapy.

View Article and Find Full Text PDF