Background: Cancer, a disease with high morbidity and mortality rates, poses a significant threat to human health. Driver genes, which harbor mutations accountable for the initiation and progression of tumors, play a crucial role in cancer development. Identifying driver genes stands as a paramount objective in cancer research and precision medicine.
View Article and Find Full Text PDFAcute coronary syndrome (ACS) is a multifaceted cardiovascular condition frequently accompanied by multiple comorbidities, which can have significant implications for patient outcomes and treatment approaches. Precisely predicting these comorbidities is crucial for providing personalized care and making well-informed clinical decisions. However, there is a shortage of research investigating the identification of risk factors associated with ACS comorbidities and accurately predicting their likelihood of occurrence beyond heart failure.
View Article and Find Full Text PDFDrug sensitivity prediction plays a crucial role in precision cancer therapy. Collaboration among medical institutions can lead to better performance in drug sensitivity prediction. However, patient privacy and data protection regulation remain a severe impediment to centralized prediction studies.
View Article and Find Full Text PDFAlthough computational methods for driver gene identification have progressed rapidly, it is far from the goal of obtaining widely recognized driver genes for all cancer types. The driver gene lists predicted by these methods often lack consistency and stability across different studies or datasets. In addition to analytical performance, some tools may require further improvement regarding operability and system compatibility.
View Article and Find Full Text PDFAmong the middle-aged and senile populations, ischemic stroke (IS) is a frequently occurring acute condition of the cerebrovascular system. Traditionally, it is recognized that when stroke occurs, microglia are activated into M1 phenotype and release cytotoxic cytokines, reactive oxygen species, proteases, and other factors, thus exacerbating the injury by further destroying or killing nearby neurons. In the latest research, the crucial role of the intercellular mitochondrial crosstalk on the stroke management has been demonstrated.
View Article and Find Full Text PDFThe current research aims to construct and assess pea protein isolate (PPI) nanocarriers for lipophilic polyphenols of curcumin (CUR), quercetin (QUE) and resveratrol (RES), respectively. Fluorescence analysis demonstrated that the binding affinity declined in sequence of QUE > CUR > RES and about one polyphenol compound was bound to protein. Thermodynamic parameters revealed that hydrophobic interaction was mainly responsible for complexation between CUR/RES and PPI, while hydrogen bonding for QUE with PPI.
View Article and Find Full Text PDFReconstituted high-density lipoproteins (rHDLs) hold promise as nanocarriers for atherosclerosis-targeted delivery, with biofunctions typified by mediating cholesterol efflux. The paradox is how rHDL offloads the delivered drugs into atherosclerotic foam cells, while simultaneously transferring cholesterol out of cells. Herein, simvastatin-loaded discoidal rHDL (ST-d-rHDL), constructed based on established paradigms, was employed to investigate its basic trafficking mechanism in foam cells.
View Article and Find Full Text PDFA paradigm shift from preventive therapy to aggressive plaque regression and eventual eradication is much needed to address increasing atherosclerotic burden and risks. Herein, we report a biologically inspired dual-targeting multifunctional recombinant high-density lipoprotein (rHDL)-mimicking core-shell nanoplatform. It is composed of an ATP-responsive ternary polyplexes core for SR-A siRNA and catalase complexation, and a phosphatidylserine-modified rHDL-based outer shell for SR-BI and CD36 targeting, in which pitavastatin is packaged.
View Article and Find Full Text PDFReconstituted high density lipoprotein (rHDL) is a biomimetic nanoparticle with plaque targeting and anti-atherosclerotic efficacy. In this work, we report on a strategy to rational design of lovastatin (LOV)-loaded spherical rHDL (LOV-s-rHDL) for efficient and safe anti-atherosclerotic therapy. Briefly, three LOV-s-rHDLs were formulated with LOV/s-rHDL at ratios of 8:1, 10:1, and 15:1 upon their respective median-effect values ( D).
View Article and Find Full Text PDFIn this work, we report on an ATP-responsive low-molecular-weight polyethylenimine (LMW-PEI)-based supramolecular assembly. It formed via host-guest interaction between PEI (MW = 1.8 kDa)-α-cyclodextrin (α-CD) conjugates and PEI-phenylboronic acid (PBA) conjugates.
View Article and Find Full Text PDFA biofunctional polymer-lipid hybrid high-density lipoprotein-mimicking nanoparticle (HNP) loading anti-miR155 was constructed for combined antiatherogenic effects on macrophages. The HNP consisted of an anti-miR155 core condensed by acid-labile polyethylenimine (acid-labile PEI) polymers and a lipid bilayer coat that was decorated with apolipoprotein A-1, termed acid-labile PEI/HNP. The acid-labile PEI was synthesized with low-molecular-weight PEI and glutaraldehyde to reduce the cytotoxicity and facilitate nucleic acids escaping from acidic endolysosomes.
View Article and Find Full Text PDF