The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure.
View Article and Find Full Text PDFBile acid homeostasis is crucial for the normal physiological functioning of the liver. Disruptions in bile acid profiles are closely linked to the occurrence of cholestatic liver injury. As part of our diagnostic and therapeutic approach, we aimed to investigate the disturbance in bile acid profiles during cholestasis and its correlation with cholestatic liver injury.
View Article and Find Full Text PDFBackground: Meloxicam is a selective cyclooxygenase-2 inhibitor used for pain relief, but its poor solubility limits its clinical applications. QP001 is a novel intravenous formulation of meloxicam developed with PEG and pH regulator to improve its solubility. This study aimed to evaluate the safety, tolerability, and pharmacokinetics of QP001 in Chinese healthy subjects.
View Article and Find Full Text PDFCholestatic liver injury, a group of diseases characterized with dysregulated bile acid (BA) homeostasis, was partly resulted from BA circulation disorders, which is commonly associated with the damage of hepatocyte barrier function. However, the underlying hepatocyte barrier-protective molecular mechanisms of cholestatic liver injury remain poorly understood. Interestingly, recent studies have shown that sphingosine-1-phosphate (S1P) participated in the process of cholestasis by activating its G protein-coupled receptors S1PRs, regaining the integrity of hepatocyte tight junctions (TJs).
View Article and Find Full Text PDFDysregulated bile acid (BA) homeostasis is an extremely significant pathological phenomenon of intrahepatic cholestasis, and the accumulated BA could further trigger hepatocyte injury. Here, we showed that the expression of sphingosine-1-phosphate receptor 1 (S1PR1) was down-regulated by α-naphthylisothiocyanate (ANIT) in vivo and in vitro. The up-regulated S1PR1 induced by SEW2871 (a specific agonist of S1PR1) could improve ANIT-induced deficiency of hepatocyte tight junctions (TJs), cholestatic liver injury and the disrupted BA homeostasis in mice.
View Article and Find Full Text PDFBile acid (BA) has an important role in signal transduction, and has clinical applicability as an early biomarker for the diagnosis and prevention of cholestatic liver disease, which has a close relationship with BA homeostasis. Understanding the regulatory factors, function, and regulation of BA homeostasis under physiological conditions and in cholestatic liver diseases could provide novel therapeutic approaches for treating cholestatic liver injury. Here, we review potential biomarkers of BA, and new therapeutic approaches and the latest therapeutic drugs for cholestasis.
View Article and Find Full Text PDFBackground: Drug resistance cancer cells have become a major problem in chemotherapy. To solve this problem, the co-delivery of small interefering RNA (siRNA) and 5-fluorouracil chitosan nanoparticles was employed, aiming to reverse the multidrug resistance of gastric cancer SGC-7901 cells in vitro.
Methods: Chitosan nanoparticles were prepared using an ionic gel method.
Arsenic is a critical environmental pollutant associated with acid mine drainage. Arsenopyrite is one of the major arsenic sulfide minerals whose weathering lead to the contamination of arsenic. In this study, the leaching behaviors of arsenopyrite by two mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms (Ferroplasma thermophilum and Acidithiobacillus caldus, Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus) were investigated, accompanying with community structure analysis of free microorganisms.
View Article and Find Full Text PDF