ACS Appl Mater Interfaces
April 2024
In clinical settings, saliva has been established as a straightforward, noninvasive medium for diagnosing periodontitis. However, the precise diagnosis is often hampered by the absence of a specialized analyzer capable of detecting low concentrations of biomarkers typically found in saliva. In this study, we present a noninvasive, on-site screen-printed biomicrochip specifically engineered for the precise and sensitive quantification of lactate concentrations in saliva, a critical biomarker in the diagnosis of periodontitis.
View Article and Find Full Text PDFBackground: Clear cell renal cell carcinoma (ccRCC) is corelated with tumor-associated material (TAM), coagulation system and adipocyte tissue, but the relationships between them have been inconsistent. Our study aimed to explore the cut-off intervals of variables that are non-linearly related to ccRCC pathological T stage for providing clues to understand these discrepancies, and to effectively preoperative risk stratification.
Methods: This retrospective analysis included 218 ccRCC patients with a clear pathological T stage between January 1st, 2014, and November 30th, 2021.
The present study was conducted to investigate the effects of dietary inclusion of protein hydrolysates on growth performance, digestive enzyme activities, protein metabolism, and intestinal health in larval largemouth bass (). The experimental feeding trial presented in this study was based on five isonitrogenous and isolipidic diets formulated with graded inclusion levels of protein hydrolysates, and it showed that protein hydrolysates improved growth performance, reduced larval deformity rate, and increased the activity of digestive enzymes, including pepsin and trypsin. Gene expression results revealed that the supplementation of protein hydrolysates upregulated the expression of intestinal amino acid transporters LAT2 and peptide transporter 2 (PepT2), as well as the amino acid transporters LAT1 in muscle.
View Article and Find Full Text PDFWhile the beneficial roles of dietary phospholipids on health status and overall performances of fish larvae have been well demonstrated, the underlying mechanisms remain unclear. To address this gap, the present study was conducted to investigate the effects of dietary phospholipids on growth performance, intestinal development, immune response and microbiota of larval largemouth bass (). Five isonitrogenous and isolipidic micro-diets were formulated to contain graded inclusion levels of phospholipids (1.
View Article and Find Full Text PDF