Publications by authors named "Zishen Yan"

Metastasis plays a crucial role in tumor development, however, lack of quantitative methods to characterize the capability of cells to undergo plastic deformations has hindered the understanding of this important process. Here, a microfluidic system capable of imposing precisely controlled cyclic deformation on cells and therefore probing their viscoelastic and plastic characteristics is developed. Interestingly, it is found that significant plastic strain can accumulate rapidly in highly invasive cancer cell lines and circulating tumor cells (CTCs) from late-stage lung cancer patients with a characteristic time of a few seconds.

View Article and Find Full Text PDF

A novel electroporation system was developed to introduce transient membrane pores to cells in a spatially and temporally controlled manner, allowing us to achieve fast electrotransfection and live cell staining as well as to systematically interrogate the dynamics of the cell membrane. Specifically, using this platform, we showed that both reversible and irreversible electroporation could be induced in the cell population, with nano-sized membrane pores in the former case being able to self-reseal in ~10 min. In addition, green fluorescent protein(GFP)-vinculin plasmid and 543 phalloidin have been delivered successively into fibroblast cells, which enables us to monitor the distinct roles of vinculin and F-actin in cell adhesion and migration as well as their possible interplay during these processes.

View Article and Find Full Text PDF

Damage-induced retraction of axons during traumatic brain injury is believed to play a key role in the disintegration of the neural network and to eventually lead to severe symptoms such as permanent memory loss and emotional disturbances. However, fundamental questions such as how axon retraction progresses and what physical factors govern this process still remain unclear. Here, we report a combined experimental and modeling study to address these questions.

View Article and Find Full Text PDF

Membrane blebbing, as a mechanism for cells to regulate their internal pressure and membrane tension, is believed to play important roles in processes such as cell migration, spreading and apoptosis. However, the fundamental question of how different blebs interact with each other during their life cycles remains largely unclear. Here, we report a combined theoretical and experimental investigation to examine how the growth and retraction of a cellular bleb are influenced by neighboring blebs as well as the fusion dynamics between them.

View Article and Find Full Text PDF