End-of-life plastics and carbon dioxide (CO2) are anthropogenic waste carbon resources; it is imperative to develop efficient technologies to convert them to value-added products. Here we report the upcycling of polyethylene terephthalate (PET) plastic and CO2 toward valuable potassium diformate, terephthalic acid, and H2 fuel via decoupled electrolysis. This product-oriented process is realized by two electrolyzers: (1) a solid-state-electrolyte based CO2 electrolyzer and (2) a solid-polymer-electrolyte-based PET electrolyzer.
View Article and Find Full Text PDFDeveloping hydrophobic interface has proven effective in addressing dendrite growth and side reactions during zinc (Zn) plating in aqueous Zn batteries. However, this solution inadvertently impedes the solvation of Zn with HO and subsequent ionic transport during Zn stripping, leading to insufficient reversibility. Herein, an adaptive hydrophobic interface that can be switched "on" and "off" by ionic valves to accommodate the varying demands for interfacial HO during both the Zn plating and stripping processes, is proposed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2023
In aqueous zinc (Zn) batteries, the Zn anode suffers from severe corrosion reactions and consequent dendrite growth troubles that cause fast performance decay. Herein, we uncover the corrosion mechanism and confirm that the dissolved oxygen (DO) other than the reputed proton is a principal origin of Zn corrosion and by-product precipitates, especially during the initial battery resting period. In a break from common physical deoxygenation methods, we propose a chemical self-deoxygenation strategy to tackle the DO-induced hazards.
View Article and Find Full Text PDFSeawater batteries (SWBs) are a key part of the future underwater energy network for maritime safety and resource development due to their high safety, long lifespan, and eco-friendly nature. However, the complicated seawater composition and pollution, such as the S, usually poison the catalyst and lead to the degradation of the battery performance. Here, Zn single-atom catalysts (SACs) were demonstrated as effective oxygen reduction reaction catalysts with high anti-poisoning properties by density functional theory calculation and the Zn SACs anchoring on an N, P-doped carbon substrate (Zn-SAC@PNC) was synthesized by a one-pot strategy.
View Article and Find Full Text PDFTackling the huge volume expansion of silicon (Si) anode desires a stable solid electrolyte interphase (SEI) to prohibit the interfacial side reactions. Here, a layered conductive polyaniline (LCP) coating is built on Si nanoparticles to achieve high areal capacity and long lifespan. The conformal LCP coating stores electrolyte in interlamination spaces and directs an in situ formation of LCP-integrated hybrid SEI skin with uniform distribution of organic and inorganic components, enhancing the flexibility of the SEI to buffer the volume changes and maintaining homogeneous ion transport during cycling.
View Article and Find Full Text PDFElectrocatalytic CO reduction to value-added hydrocarbon products using metallic copper (Cu) catalysts is a potentially sustainable approach to facilitate carbon neutrality. However, Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis, which can have either adverse or beneficial effects on its electrocatalytic performance. In a break from the current catalyst design path, we propose a strategy guiding the reconstruction process in a favorable direction to improve the performance.
View Article and Find Full Text PDFDesigning highly selective and energy-efficient electrocatalysts to minimize the competitive hydrogen evolution reaction in the electrochemical reduction of aqueous CO remains a challenge. In this study, we report that doping Pd with a small amount of Te could selectively convert CO to CO with a low overpotential. The PdTe/few-layer graphene (FLG) catalyst with a Pd/Te molar ratio of 1 : 0.
View Article and Find Full Text PDFElectrochemical CO reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry.
View Article and Find Full Text PDF