Purpose: This study aimed to evaluate the potential of astragalus polysaccharide (APS) pretreatment in enhancing the homing and anti-peritoneal fibrosis capabilities of bone marrow mesenchymal stromal cells (BMSCs) and to elucidate the underlying mechanisms.
Methods: Forty male Sprague-Dawley rats were allocated into four groups: control, peritoneal dialysis fluid (PDF), PDF + BMSCs, and PDF + BMSCs (APS-pre-treated BMSCs). A peritoneal fibrosis model was induced using PDF.
Phonon-assisted upconversion photoluminescence (UCPL) plays an important role in a wide range of fields such as optical refrigeration, sensitive optical thermometry, quantum state control, and upconversion optoelectronics. High photoluminescence quantum yield (PLQY) and strong electron-phonon coupling are two basic prerequisites of efficient UCPL materials. The self-trapped exciton (STE) system with the above-mentioned advantages hints that it may be a good candidate for phonon-assisted UCPL.
View Article and Find Full Text PDFNickel oxide (NiO ) is a promising hole transport material (HTM) for perovskite photovoltaics owing to its chemical stability and low cost. However, most NiO based solar cells deliver relatively weak performance because of its insufficient electrical property and interfacial contact. In this work, a self-formed PbI /NiO interface was developed to stabilize the Ni centers, which was beneficial for electrical transport and band alignment in perovskite solar cells.
View Article and Find Full Text PDFPassivation, as a classical surface treatment technique, has been widely accepted in start-of-the-art perovskite solar cells (PSCs) that can effectively modulate the electronic and chemical property of defective perovskite surface. The discovery of inorganic passivation compounds, such as oxysalts, has largely advanced the efficiency and lifetime of PSCs on account of its favorable electrical property and remarkable inherent stability, but a lack of deep understanding of how its local configuration affects the passivation effectiveness is a huge impediment for future interfacial molecular engineering. Here, we demonstrate the central-atom-dependent-passivation of oxysalt on perovskite surface, in which the central atoms of oxyacid anions dominate the interfacial oxygen-bridge strength.
View Article and Find Full Text PDFThe insertion of organic spacers into halide perovskite slabs has offered a trade-off between the efficiency and stability of perovskite solar cells (PSCs). The layered structure of diammonium-intercalated cesium lead halide perovskites is virtually unexplored, in contrast to several works on the monoammonium system. In this report, we find that perovskite with 1,4-butanediammonium (BDA) and cesium cations can only form = 1 and = 2 layered isologues defined by the chemical formula of (BDA)CsPb(IBr), while the = 3-4 ones will self-construct into unique heterostructures comprising separated quantum wells (QWs; = 1-2) and 3D ( = ∞) perovskites.
View Article and Find Full Text PDFAtaxin-7 (Atx7) is a component of the nuclear transcription co-activator complex; its polyglutamine (polyQ) expansion may cause nuclear accumulation and recruit numerous proteins to the intranuclear inclusion bodies. Full-length R85 (R85FL) is such a protein sequestered by polyQ-expanded Atx7. Here, we report that Atx7 specifically interacts with the third SH3 domain (SH3C) of R85FL through its second portion of proline-rich region (PRR).
View Article and Find Full Text PDFThe J-domain co-chaperones work together with the heat shock protein 70 (HSP70) chaperone to regulate many cellular events, but the mechanism underlying the J-domain-mediated HSP70 function remains elusive. We studied the interaction between human-inducible HSP70 and Homo sapiens J-domain protein (HSJ1a), a J domain and UIM motif-containing co-chaperone. The J domain of HSJ1a shares a conserved structure with other J domains from both eukaryotic and prokaryotic species, and it mediates the interaction with and the ATPase cycle of HSP70.
View Article and Find Full Text PDFDeubiquitination is a reverse process of cellular ubiquitination important for many biological events. Ubiquitin (Ub)-specific protease 13 (USP13) is an ortholog of USP5 implicated in catalyzing hydrolysis of various Ub chains, but its enzymatic properties and catalytic regulation remain to be explored. Here we report studies of the roles of the Ub-binding domains of USP13 in regulatory catalysis by biochemical and NMR structural approaches.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2011
Ubiquitin C-terminal hydrolases (UCHs) are a representative family of deubiquitinating enzymes (DUBs), which specifically cleave ubiquitin (Ub) chains or extensions. Here we present a convenient method for characterizing the substrate specificities of various UCHs by fluorescently mutated Ub-fusion proteins (Ub(F45W)-Xaa) and di-ubiquitin chains (Ub(F45W)-diUb). After removal of the intact substrate by Ni(2+)-NTA affinity, the enzymatic activities of UCHs were quantitatively determined by recording fluorescence of the Ub(F45W) product.
View Article and Find Full Text PDFUCHs [Ub (ubiquitin) C-terminal hydrolases] are a family of deubiquitinating enzymes that are often thought to only remove small C-terminal peptide tails from Ub adducts. Among the four UCHs identified to date, neither UCH-L3 nor UCH-L1 can catalyse the hydrolysis of isopeptide Ub chains, but UCH-L5 can when it is present in the PA700 complex of the proteasome. In the present paper, we report that the UCH domain of UCH-L5, different from UCH-L1 and UCH-L3, by itself can process the K48-diUb (Lys48-linked di-ubiquitin) substrate by cleaving the isopeptide bond between two Ub units.
View Article and Find Full Text PDFHomo sapiens J domain protein (HSJ1) is a J-domain containing co-chaperone that is known to stimulate ATPase activity of HSP70 chaperone, while it also harbors two ubiquitin (Ub)-interacting motifs (UIMs) that may bind with ubiquitinated substrates and potentially function in protein degradation. We studied the effects of HSJ1a on the protein levels of both normal and the disease--related polyQ-expanded forms of ataxin-3 (Atx3) in cells. The results demonstrate that the N-terminal J-domain and the C-terminal UIM domain of HSJ1a exert opposite functions in regulating the protein level of cellular overexpressed Atx3.
View Article and Find Full Text PDFRepressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast and promoting gene silencing in Saccharomyces cerevisiae, whereas it represses homology-directed recombination at telomeres in mammals. To understand how RAP1 has such diverse functions at telomeres, we solved the crystal or solution structures of the RAP1 C-terminal (RCT) domains of RAP1 from multiple organisms in complex with their respective protein-binding partners.
View Article and Find Full Text PDFThe ubiquitin-interacting motif (UIM) is a short peptide with dual function of binding ubiquitin (Ub) and promoting ubiquitination. We elucidated the structures and dynamics of the tandem UIMs of ataxin-3 (AT3-UIM12) both in free and Ub-bound forms. The solution structure of free AT3-UIM12 consists of two α-helices and a flexible linker, whereas that of the Ub-bound form is much more compact with hydrophobic contacts between the two helices.
View Article and Find Full Text PDFArsenic, an ancient drug used in traditional Chinese medicine, has attracted worldwide interest because it shows substantial anticancer activity in patients with acute promyelocytic leukemia (APL). Arsenic trioxide (As2O3) exerts its therapeutic effect by promoting degradation of an oncogenic protein that drives the growth of APL cells, PML-RARalpha (a fusion protein containing sequences from the PML zinc finger protein and retinoic acid receptor alpha). PML and PML-RARalpha degradation is triggered by their SUMOylation, but the mechanism by which As2O3 induces this posttranslational modification is unclear.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
July 2009
Objective: To predict the possibility of epidemic outbreak of meningitis by testing Neissria Meningitides in a healthy population in the Mianzhu post-earthquake residential area.
Methods: A simple random sampling strategy was adopted to collect 887 throat swabs from a healthy population in the Mainzhu post-earthquake residential area. The TaqMan assay were performed to detect Neissria Meningitides.
alpha-Synuclein (alpha-Syn) is the major component of Lewy bodies (LBs) deposited in the brains of patients with Parkinson's disease. Synphilin-1 (Sph1) is a novel alpha-Syn-interacting protein also present in the LBs. However, the roles of alpha-Syn-Sph1 interaction in LB formation and in the related pathogenesis are still unclear.
View Article and Find Full Text PDFUbiquitin (Ub) is an essential modifier conserved in all eukaryotes from yeast to human. Phospholipase A(2)-activating protein (PLAA), a mammalian homolog of yeast DOA1/UFD3, has been proposed to be able to bind with Ub, which plays important roles in endoplasmic reticulum-associated degradation, vesicle formation, and DNA damage response. We have identified a core domain from the PLAA family ubiquitin-binding region of human PLAA (residues 386-465, namely PFUC) that can bind Ub and elucidated its solution structure and Ub-binding mode by NMR approaches.
View Article and Find Full Text PDFSichuan Da Xue Xue Bao Yi Xue Ban
July 2008
Objective: To develop a molecular beacon real-time PCR for rapid detection of Mycobacterium tuberculosis.
Method: One set of primers was selected from the IS6110 gene in GenBank and the corresponding molecular beacon probe was designed. The specificity and sensitivity of the developed method were evaluated by tested with 10 different bacteria species.
The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub).
View Article and Find Full Text PDF