Publications by authors named "Ziran Xu"

Creating simple methods to produce antioxidant nanozymes with clear structure-activity relationships, particularly aiming to improve disinfection and create practical drug formulations for bacterial wound healing, remains a crucial challenge. Herein, we synthesized iron-loaded covalent organic framework nanospheres, which were then controllably transformed into a carbon-based nanozyme with both iron single atoms and iron clusters through simple pyrolysis. We discovered that the gradual growth of iron clusters significantly boosted the nanozyme's adsorption onto the substrate and electron transfer, greatly influencing its activity.

View Article and Find Full Text PDF

Iron oxide minerals control the environmental behavior of trace elements. However, the potential effects of electron transfer directions by iron oxides between organic acids and trace elements remain unclear. This study investigates the redox capacity of tartaric acid (TA) with chromate (Cr(Ⅵ)) or arsenate (As(V)) on lepidocrocite (Lep) from the perspective of electron transfer.

View Article and Find Full Text PDF

Schwertmannite (Sch) is found in environments abundant in iron and sulfate. Microorganisms that utilize iron or sulfate can induce the phase transition of Schwertmannite, consequently leading to the redistribution of coexisting pollutants. However, the impact of the molar ratio of sulfate to iron (S/Fe) on the microbial-mediated transformation of Schwertmannite and its implications for the fate of cadmium (Cd) have not been elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on hepatocytes, the main cells in the liver, and explores the essential processes and regulators involved in their maturation.
  • Researchers used advanced techniques like single-cell RNA sequencing to identify three distinct stages of postnatal hepatocyte maturation, each linked to specific metabolic functions and varying growth rates.
  • The study also uncovered important transcription factors related to maturation and hepatocyte zonation, providing a new framework to understand liver cell development through gene analysis and genetic manipulation.
View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs , have been widely used in developmental research, disease modeling, and drug screening.

View Article and Find Full Text PDF

The influence of feedback on performance is a topic of ongoing debate, with some previous studies finding it to be ineffective, while others have discovered that it can be helpful or harmful. One possible reason for these inconsistent results may be that feedback can create a conflict between a person's beliefs and the sensory information they receive. In the present study, we used a Vernier discrimination task to examine the influence of biased feedback on performance, as this type of feedback is most likely to create conflict.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is one of the most common joint diseases and a major global public health concern. Mesenchymal stem cells (MSCs) have been widely used for the treatment of OA owing to their paracrine secretion of trophic factors, a phenomenon in which exosomes may play a major role. Here, we investigate the potential of exosomes from human umbilical cord-derived MSCs (hUC-MSCs-Exos) in alleviating OA.

View Article and Find Full Text PDF

Background: Glycyrrhiza is one of the most widely used traditional Chinese medicines in China. Its main bioactive ingredient glycyrrhizic acid (GA) has the potential to be used as a treatment for atopic dermatitis (AD) because it has similar actions to steroids, but with relatively few side effects.

Aims: The objective of this study was to explore the potential mechanisms of GA on AD mice model.

View Article and Find Full Text PDF

Fibroblasts (FBs) are the most important functional cells in the process of wound repair, and their functions can be activated by different signals at the pathological site. Although wound repair is associated with microenvironmental stiffness, the effect of matrix stiffness on FBs remains elusive. In this study, TGF-β1 was used to mimic the fibrotic environment under pathological conditions.

View Article and Find Full Text PDF

Fibroblasts can be directly reprogrammed via a combination of small molecules to generate induced neurons (iNs), bypassing intermediate stages. This method holds great promise for regenerative medicine; however, it remains inefficient. Recently, studies have suggested that physical cues may improve the direct reprogramming of fibroblasts into neurons, but the underlying mechanisms remain to be further explored, and the physical factors reported to date do not exhibit the full properties of the extracellular matrix (ECM).

View Article and Find Full Text PDF

Background: Myricetin (Myr) is a flavonoid compound that exist widely in many natural plants. Myr has been proven to have multiple biological functions, including immunomodulatory and anti-inflammatory effects.

Purpose: In this study, we investigated the therapeutic effect of Myr on calcipotriol (MC903) induced atopic dermatitis (AD) mouse model and tumor necrosis factor (TNF)-α/interferon (IFN)-γ stimulated human immortal keratinocyte line (HaCaT) in vivo and in vitro.

View Article and Find Full Text PDF

The percutaneous osseointegrated (OI) prostheses have greatly improved the overall quality of life for amputees. However, the long-term maintenance of the OI prostheses is still challenging. A major problem is bone resorption around the bone-implant-skin interface, which might cause implant loosening or osteomyelitis.

View Article and Find Full Text PDF

Myocardial infarction is a cardiovascular disease with high mortality. Human umbilical cord mesenchymal stem cells (hUC-MSCs) with strong self-renewal capacity and multipotency, provide the possibility of replacing injured cardiomyocytes. hUC-MSCs were cultured on polyacrylamide hydrogels with stiffnesses corresponding to Young's modulus of 13-16kPa and 62-68kPa which mimic the stiffnesses of healthy heart tissue and fibrotic myocardium.

View Article and Find Full Text PDF

The ever-increasing therapeutic and pharmaceutical demand for liver cells calls for systems that enable mass production of hepatic cells. Here we describe a large-scale suspension system that uses human endoderm stem cells (hEnSCs) as precursors to generate functional and transplantable hepatocytes (E-heps) or cholangiocytes (E-chos). hEnSC-derived hepatic populations are characterized by single-cell transcriptomic analyses and compared with hESC-derived counterparts, in-vitro-maintained or -expanded primary hepatocytes and adult cells, which reveals that hepatic differentiation of hEnSCs recapitulates in vivo development and that the heterogeneities of the resultant populations can be manipulated by regulating the EGF and MAPK signaling pathways.

View Article and Find Full Text PDF

Defining the precise regionalization of specified definitive endoderm progenitors is critical for understanding the mechanisms underlying the generation and regeneration of respiratory and digestive organs, yet the patterning of endoderm progenitors remains unresolved, particularly in humans. We performed single-cell RNA sequencing on endoderm cells during the early somitogenesis stages in mice and humans. We developed molecular criteria to define four major endoderm regions (foregut, lip of anterior intestinal portal, midgut, and hindgut) and their developmental pathways.

View Article and Find Full Text PDF
Article Synopsis
  • Neurodegenerative diseases result from the destruction and death of neurons, and cell transplantation could potentially restore lost functions by replacing these neurons.
  • Recent studies focus on reprogramming human fibroblasts into neurons, highlighting the importance of small molecules, transcription factors, and various physiological factors in this process.
  • The paper emphasizes the advantages of using physical factors for neuron reprogramming, suggesting they offer safer, minimally invasive methods with promising application prospects for treating neurological diseases.
View Article and Find Full Text PDF

Stem cells constantly encounter as well as respond to a variety of signals in their microenvironment. Although the role of biochemical factors has always been emphasized, the significance of biophysical signals has not been studied until recently. Additionally, biophysical elements, like extracellular matrix (ECM) stiffness, can regulate functions of stem cells.

View Article and Find Full Text PDF

During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development.

View Article and Find Full Text PDF

Background: Differentiation of human induced pluripotent stem cells (hiPSCs) into hepatocytes has important clinical significance in providing a new stem cell source for cell therapy of terminal liver disease. The differential gene expression analysis of hiPSCs, induced hepatocyte-like cells (HLCs), and primary human hepatocytes (PHHs) provides valuable information for optimization of an induction scheme and exploration of differentiation mechanisms.

Methods: Human hair follicle-derived iPSCs (hHF-iPSCs) were induced in vitro by mimicking the environment of a developing liver for 19 days.

View Article and Find Full Text PDF

The pancreas of vertebrates is separately derived from both the dorsal and ventral endodermal domains. However, the difference between these two programs has been unclear. Here, using a pancreatic determination gene, , driven GFP transgenic mouse strain, we identified Pdx1-GFP highly expressing cells (Pdx1) and Pdx1-GFP lowly expressing cells (Pdx1) in both embryonic dorsal Pdx1-expressing region (DPR) and ventral Pdx1-expressing region (VPR).

View Article and Find Full Text PDF

Background: Human mesenchymal stem cell (hMSC) differentiation into osteoblasts has important clinical significance in treating bone injury, and the stiffness of the extracellular matrix (ECM) has been shown to be an important regulatory factor for hMSC differentiation. The aim of this study was to further delineate how matrix stiffness affects intracellular signaling through integrin α5/β1, FAK, and Wnt signaling, subsequently regulating the osteogenic phenotype of hMSCs.

Methods: hMSCs were cultured on tunable polyacrylamide hydrogels coated with fibronectin with stiffness corresponding to a Young's modulus of 13-16 kPa and 62-68 kPa.

View Article and Find Full Text PDF

BMMSCs have drawn great interest in tissue engineering and regenerative medicine attributable to their multi-lineage differentiation capacity. Increasing evidence has shown that the mechanical stiffness of extracellular matrix is a critical determinant for stem cell behaviors. However, it remains unknown how matrix stiffness influences MSCs commitment with changes in cell morphology, adhesion, proliferation, self-renewal and differentiation.

View Article and Find Full Text PDF

Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM, PM, and PM on Microcystis aeruginosa were researched.

View Article and Find Full Text PDF

Despite recent progress in the preparation of feeder cells for human induced pluripotent stem cells (hiPSCs), there remain issues which limit the acquisition of feeder cells in large scale. Approaches for obtaining feeder cells quickly on a large scale are in immediate need. To reach this goal, we established suspension-adhesion method (SAM) and three-dimensional (3D) suspension method (3DSM).

View Article and Find Full Text PDF