Publications by authors named "Ziran Tang"

Smart delivery materials that respond to electric fields attract interest across various fields, whereas systems enabling rapid, controllable, and safe delivery capabilities remain essential. Based on the hypothesis of utilizing electric field to manipulate inter-component noncovalent bonds in delivery materials, a hydrogel system is hereby reported that is capable of achieving rapid guest release at low-voltage region. This system harnesses the synergistic regulation of electric field-induced host-guest electrostatic repulsion, alongside the dynamic modulation of H-bond interactions within the conductive hydrogel.

View Article and Find Full Text PDF

Two-dimensional layered structural materials exhibit a wide range of properties due to their ultrahigh specific surface area. However, achieving ordered exfoliation to obtain uniform two-dimensional structures remains challenging. In this study, we developed a supramolecular system by covalently bonding hexathiobenzene (HB) into β-cyclodextrin to create a light-responsive moiety, followed by coassembly with bipyridine and nickel ions to form a polypseudorotaxane (PR) system, which enables an light-induced exfoliation strategy for two-dimensional materials.

View Article and Find Full Text PDF

Product retention in hollow fibers is a common issue in ATF-based cell culture system. In this study, the effects of four major process factors on product (therapeutic antibody/recombinant protein) retention were investigated using Chinese hamster ovary cell. Hollow fibers made of polysulfone presented a product retention rate from 15% ± 8 to 43% ± 18% higher than those made of polyether sulfone varying with specific processes.

View Article and Find Full Text PDF