D-allulose, a low-calorie functional sweetener, is produced by the enzymatic conversion of d-fructose via D-allulose 3-epimerase (DAE) and holds significant market potential, particularly for individuals with obesity and diabetes. However, the limited reusability and stability of DAE have restricted its industrial application. In this study, we developed functional superparamagnetic supports by integrating diatomite, a biomineralized silica-based material, with cobalt ferrite nanoparticles through a green chemical co-precipitation method.
View Article and Find Full Text PDFBackground: Fructo-oligosaccharide (FOS) belongs to the group of short inulin-type fructans and is one of the most important non-digestible bifid-oligosaccharides capable of biotransforming sucrose using fructosyltransferase (FTase). However, there are no immobilized FTase products that can be successfully used industrially. In this study, diatomite was subjected to extrusion, sintering and granulation to form diatomaceous earth particles that were further modified via chitosan aminomethylation for modification.
View Article and Find Full Text PDFD-allulose, an ideal low-calorie sweetener, is primarily produced through the isomerization of d-fructose using D-allulose 3-epimerase (DAE; EC 5.1.3.
View Article and Find Full Text PDFHistidine (His) carries a unique heteroaromatic imidazole side chain and plays an irreplaceable role in peptides and proteins. With the current study, we aimed to determine the characteristics and functional activities of the bone density of soy peptide-calcium complexes in which a His residue was replaced by Leu (CBP-H). Soybean peptide (CBP-H) was chemically synthesized, the binding mechanism between CBP-H and calcium ions in combination was determined with bioinformatics and spectroscopy analysis, and the difference between CBP and CBP-H was investigated.
View Article and Find Full Text PDFIntroduction: Bioactive peptides based on foodstuffs are of particular interest as carriers for calcium delivery due to their safety and high activity. The phosphorylated peptide has been shown to enhance calcium absorption and bone formation.
Method: A novel complex of peptide phosphorylation modification derived from soybean protein was introduced, and the mechanism, stability, and osteogenic differentiation bioactivity of the peptide with or without calcium were studied.
Background: Calcium is an essential dietary mineral nutrient for humans. Digestive instability limits the bioavailability of calcium ions. Peptide-calcium chelate has been proven to excite higher calcium absorption than amino acid-calcium chelate, organic and inorganic calcium.
View Article and Find Full Text PDFSoy yogurt is plant-based dairy of great nutritional interest that is widely accepted in developing countries as a milk alternative. Poor stability has been an urgent problem to solve of soy yogurt products over past several years. The present study aimed to construct multiple network composite gel by adding low acyl gellan gum (LAG) to improve the stability.
View Article and Find Full Text PDF