Facilitating an appropriate immune response is crucial for promoting bone tissue regeneration upon biomaterial implantation. In this study, the Mg-containing nanostructures on the surface of Ti-1.25Mg alloy were prepared by a one-step hydrothermal reaction method via regulating pH value to enhance the immunomodulatory osteogenic properties of Ti-Mg alloys.
View Article and Find Full Text PDFTo conquer the drug resistance of tumors and the poor solubility of paclitaxel (PTX), two PTX-cell-penetrating peptide conjugates (PTX-CPPs), PTX-TAT and PTX-LMWP, were synthesized and evaluated for the first time. Compared with free PTX, PTX-CPPs displayed significantly enhanced cellular uptake, elevated cell toxicity, increased cell apoptosis, and decreased mitochondrial membrane potential (Δψm) in both A549 and A549T cells. PTX-LMWP exhibited a stronger inhibitory effect than PTX-TAT in A549T cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
Chemotherapy outcomes for the treatment of glioma remain unsatisfied due to the inefficient drug transport across BBB/BBTB and poor drug accumulation in the tumor site. Nanocarriers functionalized with different targeting ligands are considered as one of the most promising alternatives. However, few studies were reported to compare the targeting efficiency of the ligands and develop nanoparticles to realize BBB/BBTB crossing and brain tumor targeting simultaneously.
View Article and Find Full Text PDFNoninvasive examination of live cell function in real-time is essential in advancing the understanding of the dynamic progression of cell's biological processes. We present a dynamic and noninvasive method of monitoring the adhesion and proliferation of bovine aortic endothelial cells (BAEC) using a ZnO nanostructure-modified quartz crystal microbalance (ZnOnano-QCM) biosensor. The ZnOnano-QCM biosensor consists of a conventional QCM with ZnO nanostructures directly grown on its sensing electrode deployed in-situ of a standard cell culture environment.
View Article and Find Full Text PDFA stepwise surface functionalization methodology was applied to nanostructured ZnO films grown by metal organic chemical vapor deposition (MOCVD) having three different surface morphologies (i.e., nanorod layers (ZnO films-N), rough surface films (ZnO films-R), and planar surface films (ZnO films-P).
View Article and Find Full Text PDFA surface functionalization methodology for the development of ZnO nanotips biosensors that can be integrated with microelectronics was developed. Two types of long chain carboxylic acids linkers were employed for the functionalization of 0.5 mum thick MOCVD-grown ZnO nanotip films with single-stranded DNA (ssDNA), followed by hybridization with complementary ssDNA tagged with fluorescein.
View Article and Find Full Text PDF