Publications by authors named "Ziqing Du"

Optical multiplexing for nanoscale object recognition is of great significance within the intricate domains of biology, medicine, anti-counterfeiting, and microscopic imaging. Traditionally, the multiplexing dimensions of nanoscopy are limited to emission intensity, color, lifetime, and polarization. Here, a novel dimension, optical nonlinearity, is proposed for super-resolved multiplexing microscopy.

View Article and Find Full Text PDF

Implantation of insulin-secreting cells has been trialed as a treatment for Type 1 diabetes mellitus; however, the host immunogenic response limits their effectiveness. The authors developed a core-shell nanostructure of upconversion nanoparticle-mesoporous silica for controlled local delivery of an immunomodulatory agent, MCC950, using near-infrared light and validated it in models of fibrosis. The individual components of the nanosystem did not affect the proliferation of insulin-secreting cells, unlike fibroblast proliferation (p < 0.

View Article and Find Full Text PDF

Drug-delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with controllable drug-release systems (DRSs) is still in its nascent stage. In this paper, we designed a two-way controlled drug-release system that can be promoted and prolonged, using the external stimulation of near-infrared light (NIR) and protein coating.

View Article and Find Full Text PDF

Single-beam super-resolution microscopy, also known as superlinear microscopy, exploits the nonlinear response of fluorescent probes in confocal microscopy. The technique requires no complex purpose-built system, light field modulation, or beam shaping. Here, we present a strategy to enhance this technique's spatial resolution by modulating excitation intensity during image acquisition.

View Article and Find Full Text PDF

Light scattering from nanoparticles is significant in nanoscale imaging, photon confinement. and biosensing. However, engineering the scattering spectrum, traditionally by modifying the geometric feature of particles, requires synthesis and fabrication with nanometre accuracy.

View Article and Find Full Text PDF

Since Easterlin pointed out that economic growth in nations does not guarantee increasing happiness for the average citizen, the underlying reason has remained controversial. The present study focuses on income inequality to explain the "Easterlin Paradox," ignoring the permanent inequality that long-term wealth accumulation brings. Based on social comparison theory, the literature aims to determine how wealth inequality, which accompanies economic growth, diminishes one's happiness (inequality aversion).

View Article and Find Full Text PDF

The current study sought to fabricate pectin nano-films from Premna microphylla Turcz (PMTP) leaves using a combination of ZnO-carboxymethyl cellulose. The rheological and physical properties of fabricated nano-ZnO films were studied. Spectroscopy FT-IR, microscopic study (SEM), thermogravimetry (TG), and XRD were applied to characterize the fabricated film.

View Article and Find Full Text PDF

This work introduces new methods to characterize dispersions of small-diameter or low-mass-fraction nanoparticles (NPs) by single-particle inductively coupled plasma-mass spectrometry (SP ICP-MS). The optimization of ion extraction, ion transport, and the operation of the quadrupole with increased mass bandwidth improved the signal-to-noise ratios significantly and decreased the size detection limits for all NP dispersions investigated. As a model system, 10.

View Article and Find Full Text PDF

Integrating fluorescent nanoparticles with high-, small mode volume cavities is indispensable for nanophotonics and quantum technologies. To date, nanoparticles have largely been coupled to evanescent fields of cavity modes, which limits the strength of the interaction. Here, we developed both a cavity design and a fabrication method that enable efficient coupling between a fluorescent nanoparticle and a cavity optical mode.

View Article and Find Full Text PDF