Publications by authors named "Zipu Fan"

Article Synopsis
  • On-chip measurement of polarization states is essential for advanced sensing and imaging, but current circularly polarized light (CPL) photodetectors lack effective discrimination.
  • This study introduces a new broadband CPL photodetector using achiral all-dielectric nanostructures, achieving a high discrimination ratio of ~107 at 405 nm without needing intensity calibration.
  • The device works by exciting different near-field modes depending on the chirality of the light, leading to distinct photovoltage outputs, and offers a compact and versatile solution for high-performance CPL detection across various materials and wavelengths.
View Article and Find Full Text PDF

Topological insulator bismuth has attracted considerable attention for the fabrication of room-temperature, wide bandwidth, and high-performance photodetectors due to the gapless edge state and insulating bulk state properties. However, both the photoelectric conversion and carrier transportation of the bismuth films are extremely affected by the surface morphology and grain boundaries to limit optoelectronic properties further. Here, we demonstrate a strategy of femtosecond laser treatment for upgrading the quality of bismuth films.

View Article and Find Full Text PDF

The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic CdAs nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient.

View Article and Find Full Text PDF

Elemental tellurium, conventionally recognized as a narrow bandgap semiconductor, has recently aroused research interests for exploiting Weyl physics. Chirality is a unique feature of Weyl cones and can support helicity-dependent photocurrent generation, known as circular photogalvanic effect. Here, we report circular photogalvanic effect with opposite signs at two different mid-infrared wavelengths which provides evidence of Weyl-related optical responses.

View Article and Find Full Text PDF

The direct photocurrent detection capability of light orbital angular momentum (OAM) has recently been realized with topological Weyl semimetals, but it is limited to the near-infrared wavelength range. The extension of the direct OAM detection capability to the mid-infrared band, which is a wave band that plays an important role in a vast range of applications, has not yet been realized. This is because the photocurrent responses of most photodetectors are neither sensitive to the phase information nor efficient in the mid-infrared region.

View Article and Find Full Text PDF

The thermoelectric effects of topological semimetals have attracted tremendous research interest because many topological semimetals are excellent thermoelectric materials and thermoelectricity serves as one of their most important potential applications. In this work, we reveal the transient photothermoelectric response of Dirac semimetallic CdAs, namely the photo-Seebeck effect and photo-Nernst effect, by studying the terahertz (THz) emission from the transient photocurrent induced by these effects. Our excitation polarization and power dependence confirm that the observed THz emission is due to photothermoelectric effect instead of other nonlinear optical effect.

View Article and Find Full Text PDF