Two highly conserved amino acid residues near the C-terminus within the gamma subunit of the mitochondrial ATP synthase form a "catch" with an anionic loop on one of the three beta subunits within the catalytic alphabeta hexamer of the F1 segment [Abrahams, J. P., Leslie, A.
View Article and Find Full Text PDFATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis.
View Article and Find Full Text PDF