J Gastrointest Oncol
December 2024
Background: Tumor deposits (TDs) can impact proper staging of cancer, which is crucial for discussing prognosis and determining the appropriate treatment plan. Our study aimed to correlate how TDs influence prognosis of resected colorectal cancer (CRC) and how to optimize tumor-node-metastasis (TNM) staging with respect to TDs for clinical decision-making.
Methods: A retrospective analysis was performed on 611 patients with CRC treated in Jiangsu Cancer Hospital from January 1, 2010 to December 31, 2020 among whom 197 had TDs.
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs) have recently attracted extensive attention due to their unique physical and chemical properties; however, the preparation of large-area TMD single crystals is still a great challenge. Chemical vapor deposition (CVD) is an effective method to synthesize large-area and high-quality TMD films, in which sapphires as suitable substrates play a crucial role in anchoring the source material, promoting nucleation and modulating epitaxial growth. In this review, we provide an insightful overview of different epitaxial mechanisms and growth behaviors associated with the atomic structure of sapphire surfaces and the growth parameters.
View Article and Find Full Text PDFSymmetric extensions are essential in quantum mechanics, providing a lens through which to investigate the correlations of entangled quantum systems and to address challenges like the quantum marginal problem. Though semi-definite programming (SDP) is a recognized method for handling symmetric extensions, it struggles with computational constraints, especially due to the large real parameters in generalized qudit systems. In this study, we introduce an approach that adeptly leverages permutation symmetry.
View Article and Find Full Text PDFIn light of the ongoing COVID-19 pandemic, predicting its trend would significantly impact decision-making. However, this is not a straightforward task due to three main difficulties: temporal autocorrelation, spatial dependency, and concept drift caused by virus mutations and lockdown policies. Although machine learning has been extensively used in related work, no previous research has successfully addressed all three challenges simultaneously.
View Article and Find Full Text PDFNitrogen and chlorine dually-doped carbon dots (N,Cl-CDs) were hydrothermally prepared starting from 4-chloro-1,2-diaminobenzene and dopamine. The N,Cl-CDs exhibit strong orange fluorescence, with excitation/emission maxima at 420/570 nm and a relative high quantum yield (15%). The N,Cl-CDs were employed to detect acetylcholinesterase (AChE) activity and organophosphate pesticides (OPs) which are enzyme inhibitors.
View Article and Find Full Text PDFIn extreme environments, such as at ultrahigh or ultralow temperatures, the amount of tape used should be minimal so as to reduce system contamination and unwanted residues. However, tapes made from conventional materials typically lose their adhesiveness or leave residues difficult to remove under such conditions. Thus, the development of more versatile, lightweight, and easily removable tapes for applications in such extreme environments has received considerable attention.
View Article and Find Full Text PDFTumor-derived extracellular vesicles (EVs) present in bodily fluids are emerging liquid biopsy markers for non-invasive cancer diagnosis and treatment monitoring. Because the majority of EVs in circulation are not of tumor origin, it is critical to develop new platforms capable of enriching tumor-derived EVs from the blood. Herein, we introduce a biostructure-inspired NanoVilli Chip, capable of highly efficient and reproducible immunoaffinity capture of tumor-derived EVs from blood plasma samples.
View Article and Find Full Text PDFWith the wide deployment of Wi-Fi networks, Wi-Fi based indoor localization systems that are deployed without any special hardware have caught significant attention and have become a currently practical technology. At the same time, the Magnetic, Angular Rate, and Gravity (MARG) sensors installed in commercial mobile devices can achieve highly-accurate localization in short time. Based on this, we design a novel indoor localization system by using built-in MARG sensors and a Wi-Fi module.
View Article and Find Full Text PDFThe aim of this paper is to present a new indoor localization approach by employing the Angle-of-arrival (AOA) and Received Signal Strength (RSS) measurements in Wi-Fi network. To achieve this goal, we first collect the Channel State Information (CSI) by using the commodity Wi-Fi devices with our designed three antennas to estimate the AOA of Wi-Fi signal. Second, we propose a direct path identification algorithm to obtain the direct signal path for the sake of reducing the interference of multipath effect on the AOA estimation.
View Article and Find Full Text PDF