Spectrochim Acta A Mol Biomol Spectrosc
March 2021
Phthalate plasticizers (PAEs) are heavily applied to plastic products and poses severe threat to human health. Herein, it is especially urgent to find a stable and reliable method for detecting PAEs. In this report, a Surface Enhanced Raman Scatting (SERS) strategy coupled with plasmonic core-shell Au nanospheres@Ag nanocubes (AuNS@AgNCs) as substrates were employed for the rapid and sensitive detection of Butyl benzyl phthalate (BBP) in liquor samples, and plasmonic core-shell AuNS@AgNCs tend to perform richer localized surface plasmon resonance (LSPR) than AuNS.
View Article and Find Full Text PDFIn recent years, there have been incidents involving the illegal addition of phthalic acid esters (PAEs) to liquors. It is well known that PAEs such as butyl benzyl phthalate (BBP) have estrogen-like effects, so high PAE levels in the body can lead to a decreased sperm count in males and altered sexual organ development in children, for example. The rapid detection of PAEs in liquor is therefore an important task.
View Article and Find Full Text PDFPhthalate plasticizers (PAEs) are posing a serious threat to human health, so it is urgent to develop effective and reliable ways to detect the food additives PAEs sensitively. In this study, we have reported plasmonic bimetallic Au@Ag core-shell nanocuboids for the rapid and sensitive detection of PAEs in liquor samples with a label-free Surface-enhanced Raman Spectroscopy (SERS) strategy. Compared with single-element nanostructures, the bimetallic SERS platform can integrate two distinct functions into a single entity with unprecedented properties.
View Article and Find Full Text PDF