Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition.
View Article and Find Full Text PDFGenomic loci associated with common traits and diseases are typically non-coding and likely impact gene expression, sometimes coinciding with rare loss-of-function variants in the target gene. However, our understanding of how gradual changes in gene dosage affect molecular, cellular, and organismal traits is currently limited. To address this gap, we induced gradual changes in gene expression of four genes using CRISPR activation and inactivation.
View Article and Find Full Text PDFMost variants associated with complex traits and diseases identified by genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown effects. Using ancestrally diverse, biobank-scale GWAS data, massively parallel CRISPR screens, and single-cell transcriptomic and proteomic sequencing, we discovered 124 -target genes of 91 noncoding blood trait GWAS loci. Using precise variant insertion through base editing, we connected specific variants with gene expression changes.
View Article and Find Full Text PDFOxidative stress and endothelial dysfunction have been shown to play crucial roles in the pathophysiology of COVID-19 (coronavirus disease 2019). On these grounds, we sought to investigate the impact of COVID-19 on lipid peroxidation and ferroptosis in human endothelial cells. We hypothesized that oxidative stress and lipid peroxidation induced by COVID-19 in endothelial cells could be linked to the disease outcome.
View Article and Find Full Text PDFThis paper considers a host of definitions and labels attached to the concept of smart cities to identify four dimensions that ground a review of ethical concerns emerging from the current debate. These are: (1) network infrastructure, with the corresponding concerns of control, surveillance, and data privacy and ownership; (2) post-political governance, embodied in the tensions between public and private decision-making and cities as post-political entities; (3) social inclusion, expressed in the aspects of citizen participation and inclusion, and inequality and discrimination; and (4) sustainability, with a specific focus on the environment as an element to protect but also as a strategic element for the future. Given the persisting disagreements around the definition of a smart city, the article identifies in these four dimensions a more stable reference framework within which ethical concerns can be clustered and discussed.
View Article and Find Full Text PDFFunctional mechanisms remain unknown for most genetic loci associated to complex human traits and diseases. In this study, we first mapped trans-eQTLs in a data set of primary monocytes stimulated with LPS, and discovered that a risk variant for autoimmune disease, rs17622517 in an intron of C5ORF56, affects the expression of the transcription factor IRF1 20 kb away. The cis-regulatory effect specific to IRF1 is active under early immune stimulus, with a large number of trans-eQTL effects across the genome under late LPS response.
View Article and Find Full Text PDFAbnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q10 (CoQ10) deficiency.
View Article and Find Full Text PDFRare genetic variants are abundant across the human genome, and identifying their function and phenotypic impact is a major challenge. Measuring aberrant gene expression has aided in identifying functional, large-effect rare variants (RVs). Here, we expanded detection of genetically driven transcriptome abnormalities by analyzing gene expression, allele-specific expression, and alternative splicing from multitissue RNA-sequencing data, and demonstrate that each signal informs unique classes of RVs.
View Article and Find Full Text PDFWe present an assay to experimentally test the regulatory effects of genetic variants within transcripts using CRISPR/Cas9 followed by targeted sequencing. We applied the assay to 32 premature stop-gained variants across the genome and in two Mendelian disease genes, 33 putative causal variants of eQTLs, and 62 control variants in HEK293T cells, replicating a subset of variants in HeLa cells. We detected significant effects in the expected direction (in 60% of variants), demonstrating the ability of the assay to capture regulatory effects of eQTL variants and nonsense-mediated decay triggered by premature stop-gained variants.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
November 2018
Nephrotic syndrome (NS), a frequent chronic kidney disease in children and young adults, is the most common phenotype associated with primary coenzyme Q (CoQ) deficiency and is very responsive to CoQ supplementation, although the pathomechanism is not clear. Here, using a mouse model of CoQ deficiency-associated NS, we show that long-term oral CoQ supplementation prevents kidney failure by rescuing defects of sulfides oxidation and ameliorating oxidative stress, despite only incomplete normalization of kidney CoQ levels and lack of rescue of CoQ-dependent respiratory enzymes activities. Liver and kidney lipidomics, and urine metabolomics analyses, did not show CoQ metabolites.
View Article and Find Full Text PDFLeigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
May 2018
AMP-activated protein kinase (AMPK) regulates many different metabolic pathways in eukaryote cells including mitochondria biogenesis and energy homeostasis. Here we identify a patient with hypotonia, weakness, delayed milestones and neurological impairment since birth harbouring a novel homozygous mutation in the AMPK catalytic α-subunit 1, encoded by the PRKAA1 gene. The homozygous mutation p.
View Article and Find Full Text PDFCoenzyme Q (CoQ) is a lipid present in all cell membranes. One of the multiple metabolic functions of CoQ is to transport electrons in the reaction catalyzed by sulfide:quinone oxidoreductase (SQOR), the first enzyme of the oxidation pathway of sulfides (hydrogen sulfide, HS). Early evidence of a defect in the metabolism of HS in primary CoQ deficiency came from yeast studies in strains defective for and (homologs of and , respectively), which have HS accumulation.
View Article and Find Full Text PDFCoenzyme Q (CoQ) or ubiquinone is one of the two electron carriers in the mitochondrial respiratory chain which has an essential role in the process of oxidative phosphorylation. Defects in CoQ synthesis are usually associated with the impaired function of CoQ-dependent complexes I, II and III. The recessively transmitted CoQ deficiency has been associated with a number of phenotypically and genetically heterogeneous groups of disorders manifesting at variable age of onset.
View Article and Find Full Text PDFCoenzyme Q (CoQ) is an electron acceptor for sulfide-quinone reductase (SQR), the first enzyme of the hydrogen sulfide oxidation pathway. Here, we show that lack of CoQ in human skin fibroblasts causes impairment of hydrogen sulfide oxidation, proportional to the residual levels of CoQ. Biochemical and molecular abnormalities are rescued by CoQ supplementation in vitro and recapitulated by pharmacological inhibition of CoQ biosynthesis in skin fibroblasts and ADCK3 depletion in HeLa cells.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
July 2016
In familial and sporadic multiple system atrophy (MSA) patients, deficiency of coenzyme Q10 (CoQ10) has been associated with mutations in COQ2, which encodes the second enzyme in the CoQ10 biosynthetic pathway. Cerebellar ataxia is the most common presentation of CoQ10 deficiency, suggesting that the cerebellum might be selectively vulnerable to low levels of CoQ10 To investigate whether CoQ10 deficiency represents a common feature in the brains of MSA patients independent of the presence of COQ2 mutations, we studied CoQ10 levels in postmortem brains of 12 MSA, 9 Parkinson disease (PD), 9 essential tremor (ET) patients, and 12 controls. We also assessed mitochondrial respiratory chain enzyme activities, oxidative stress, mitochondrial mass, and levels of enzymes involved in CoQ biosynthesis.
View Article and Find Full Text PDFIn growing tissues, cell fitness disparities can provoke interactions that promote stronger cells at the expense of the weaker in a process called cell competition. The mechanistic definition of cell fitness is not understood, nor is it understood how fitness differences are recognized. Drosophila cells with extra Myc activity acquire "supercompetitor" status upon confrontation with wild-type (WT) cells, prompting the latter's elimination via apoptosis.
View Article and Find Full Text PDFCellular communication is at the heart of animal development, and guides the specification of cell fates, the movement of cells within and between tissues, and the coordinated arrangement of different body parts. During organ and tissue growth, cell-cell communication plays a critical role in decisions that determine whether cells survive to contribute to the organism. In this review, we discuss recent insights into cell competition, a social cellular phenomenon that selects the fittest cells in a tissue, and as such potentially contributes to the regulation of its growth and final size.
View Article and Find Full Text PDFGenetic analyses in Drosophila epithelia have suggested that the phenomenon of "cell competition" could participate in organ homeostasis. It has been speculated that competition between different cell populations within a growing organ might play a role as either tumor promoter or tumor suppressor, depending on the cellular context. The evolutionarily conserved Hippo (Hpo) signaling pathway regulates organ size and prevents hyperplastic disease from flies to humans by restricting the activity of the transcriptional cofactor Yorkie (yki).
View Article and Find Full Text PDFBackground: Neoplastic overgrowth depends on the cooperation of several mutations ultimately leading to major rearrangements in cellular behaviour. Precancerous cells are often removed by cell death from normal tissues in the early steps of the tumourigenic process, but the molecules responsible for such a fundamental safeguard process remain in part elusive. With the aim to investigate the molecular crosstalk occurring between precancerous and normal cells in vivo, we took advantage of the clonal analysis methods that are available in Drosophila for studying the phenotypes due to lethal giant larvae (lgl) neoplastic mutation induced in different backgrounds and tissues.
View Article and Find Full Text PDFDrosophila lethal giant larvae (lgl) is a tumour suppressor gene whose function in establishing apical-basal cell polarity as well as in exerting proliferation control in epithelial tissues is conserved between flies and mammals. Individuals bearing lgl null mutations show a gradual loss of tissue architecture and an extended larval life in which cell proliferation never ceases and no differentiation occurs, resulting in prepupal lethality. When tissues from those individuals are transplanted into adult normal recipients, a subset of cells, possibly the cancer stem units, are again able to proliferate and give rise to metastases which migrate to distant sites killing the host.
View Article and Find Full Text PDFBackground: Genetically based body size differences are naturally occurring in populations of Drosophila melanogaster, with bigger flies in the cold. Despite the cosmopolitan nature of body size clines in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of body size variation are not fully understood. In particular, it is not clear what the selective value of cell size and cell area variation exactly is.
View Article and Find Full Text PDFBackground: Populations of Drosophila melanogaster show differences in many morphometrical traits according to their geographic origin. Despite the widespread occurrence of these differences in more than one Drosophila species, the actual selective mechanisms controlling the genetic basis of such variation are not fully understood. Thermal selection is considered to be the most likely cause explaining these differences.
View Article and Find Full Text PDFJ Cataract Refract Surg
September 1996
Purpose: To quantitatively assess early postoperative endothelial damage caused by two phacoemulsification techniques and to ascertain the effect of differences in phacoemulsification time.
Setting: Department of Ophthalmology, Umberto Hospital, Lugo, Italy.
Methods: This prospective study evaluated 100 patients who had phacoemulsification using one of two techniques: phaco chop (n = 50) or four-quadrant, divide and conquer phacofracture (n = 50).