Publications by authors named "Zion Tsz-Ho Tse"

There have been sustained efforts toward using naturalistic methods in developmental science to measure infant behaviors in the real world from an egocentric perspective because statistical regularities in the environment can shape and be shaped by the developing infant. However, there is no user-friendly and unobtrusive technology to densely and reliably sample life in the wild. To address this gap, we present the design, implementation and validation of the EgoActive platform, which addresses limitations of existing wearable technologies for developmental research.

View Article and Find Full Text PDF

Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods.

View Article and Find Full Text PDF

Due to their wide range of clinical application possibilities, magnetic actuation technologies have grabbed the attention of researchers worldwide. The design, execution, and analysis of magnetic catheter systems have advanced significantly during the last decade. The review focuses on magnetic actuation for catheter steering and control of the device, which will be explored in detail in the following sections.

View Article and Find Full Text PDF

Wearable health sensors could monitor the wearer's health and surrounding environment in real-time. With the development of sensor and operating system hardware technology, the functions of wearable devices have been gradually enriched with more diversified forms and more accurate physiological indicators. These sensors are moving towards high precision, continuity, and comfort, making great contributions to improving personalized health care.

View Article and Find Full Text PDF

Magnetically steerable catheters (MSCs) have caught the interest of researchers due to their various potential uses in clinical applications, for example, minimally invasive surgery. Many significant advances in the design, implementation and analysis of MSCs have been accomplished in the last decade. This review concentrates on the configurations of current MSCs with an in depth look at control of the device and the specific workspace.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) has the ability to provide high-resolution images of soft tissues without the use of radiation. So much research has been focused on the development of actuators and robotic devices that can be used in the MRI environment so "real-time" images can be obtained during surgeries. With real-time guidance from MRI, robots can perform surgical procedures with high accuracy and through less invasive routes.

View Article and Find Full Text PDF

Training medical students in surgical procedures and evaluating their performance are both necessary steps to ensure the safety and efficacy of surgeries. Traditionally, trainees practiced on live patients, cadavers or animals under the supervision of skilled physicians, but realistic anatomical phantom models have provided a low-cost alternative because of the advance of material technology that mimics multi-layer tissue structures. This setup provides safer and more efficient training.

View Article and Find Full Text PDF

Background: During COVID-19, clinical and health care demands have been on the rapid rise. Major challenges that have arisen during the pandemic have included a lack of testing kits, shortages of ventilators to treat severe cases of COVID-19, and insufficient accessibility to personal protective equipment for both hospitals and the public. New technologies have been developed by scientists, researchers, and companies in response to these demands.

View Article and Find Full Text PDF

Objective: Researchers at the Centers for Disease Control and Prevention monitor unplanned school closure (USC) reports through online systematic searches (OSS) to assist public health emergency responses. We counted the additional reports identified through social media along with OSS to improve USC monitoring.

Methods: Facebook and Twitter data of public-school districts and private schools in counties affected by California wildfires in October and December of 2017 and January of 2018 were retrieved.

View Article and Find Full Text PDF

Social media platforms have become accessible resources for health data analysis. However, the advanced computational techniques involved in big data text mining and analysis are challenging for public health data analysts to apply. This study proposes and explores the feasibility of a novel yet straightforward method by regressing the outcome of interest on the aggregated influence scores for association and/or classification analyses based on generalized linear models.

View Article and Find Full Text PDF

Image-guided robotics for biopsy and ablation aims to minimize procedure times, reduce needle manipulations, radiation, and complications, and enable treatment of larger and more complex tumors, while facilitating standardization for more uniform and improved outcomes. Robotic navigation of needles enables standardized and uniform procedures which enhance reproducibility via real-time precision feedback, while avoiding radiation exposure to the operator. Robots can be integrated with computed tomography (CT), cone beam CT, magnetic resonance imaging, and ultrasound and through various techniques, including stereotaxy, table-mounted, floor-mounted, and patient-mounted robots.

View Article and Find Full Text PDF

There is compelling support for widening the role of computed tomography (CT) for COVID-19 in clinical and research scenarios. Reverse transcription polymerase chain reaction (RT-PCR) testing, the gold standard for COVID-19 diagnosis, has two potential weaknesses: the delay in obtaining results and the possibility of RT-PCR test kits running out when demand spikes or being unavailable altogether. This perspective article discusses the potential use of CT in conjunction with RT-PCR in hospitals lacking sufficient access to RT-PCR test kits.

View Article and Find Full Text PDF

Image-guided therapies have been on the rise in recent years as they can achieve higher accuracy and are less invasive than traditional methods. By combining augmented reality technology with image-guided therapy, more organs, and tissues can be observed by surgeons to improve surgical accuracy. In this review, 233 publications (dated from 2015 to 2020) on the design and application of augmented reality-based systems for image-guided therapy, including both research prototypes and commercial products, were considered for review.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with no cure and limited treatment options. Recent studies have shown that delivering cellular therapeutics to the ventral horn of the spinal cord can effectively halt neurodegeneration associated with ALS in small animal models.

Methods: We developed a robotic system that assists with MRI-guided percutaneous injections to the spinal cord.

View Article and Find Full Text PDF

Many countries have enacted a quick response to the unexpected coronavirus disease 2019 (COVID-19) pandemic by using existing technologies. For example, robotics, artificial intelligence, and digital technology have been deployed in hospitals and public areas for maintaining social distancing, reducing person-to-person contact, enabling rapid diagnosis, tracking virus spread, and providing sanitation. In this study, 163 news articles and scientific reports on COVID-19-related technology adoption were screened, shortlisted, categorized by application scenario, and reviewed for functionality.

View Article and Find Full Text PDF

Introduction: Minimally invasive image-guided interventions have changed the face of procedural medicine. For these procedures, safety and efficacy depend on precise needle placement. Needle targeting devices help improve the accuracy of needle placement, but their use has not seen broad penetration.

View Article and Find Full Text PDF

The objective of this study was to evaluate a method for printing a custom radiocontrast agent mixture to develop computed tomography markers of various shapes and sizes for assisting physicians in computed tomography-guided procedures. The radiocontrast agent mixture was designed to be bright in a computed tomography image, able to be extruded from a nozzle as a liquid and transition into a solid, and sufficiently viscous to be extruded through the tip of a needle in a controlled manner. A mixture printing method was developed using a syringe to house the mixture, a syringe pump to extrude the mixture, and a computer numeric control laser cutter to direct the nozzle in the desired path.

View Article and Find Full Text PDF

The recent advancement of motion tracking technology offers better treatment tools for conditions, such as movement disorders, as the outcome of the rehabilitation could be quantitatively defined. The accurate and fast angular information output of the inertial measurement unit tracking systems enables the collection of accurate kinematic data for clinical assessment. This article presents a study of a low-cost microelectromechanical system inertial measurement unit-based tracking system in comparison with the conventional optical tracking system.

View Article and Find Full Text PDF

Objectives: To aid emergency response, Centers for Disease Control and Prevention (CDC) researchers monitor unplanned school closures (USCs) by conducting online systematic searches (OSS) to identify relevant publicly available reports. We examined the added utility of analyzing Twitter data to improve USC monitoring.

Methods: Georgia public school data were obtained from the National Center for Education Statistics.

View Article and Find Full Text PDF

Minimally invasive surgical procedures often require needle insertion. For these procedures, efficacy greatly depends on precise needle placement. Many methods, such as optical tracking and electromagnetic tracking, have been applied to assist needle placement by tracking the real-time position information of the needle.

View Article and Find Full Text PDF

Introduction: Twitter and media coverage on poliomyelitis help maintain global support for its eradication.

Objective: To test our hypothesis that themes of polio-related tweets and media articles would differ by location of interest (hashtag of country name mentioned in the tweet; country name mentioned in media articles) but would be similar to each other (tweets and media articles) for each location of interest.

Methods: We retrospectively examined a 40% random sample of Twitter data containing the hashtag #polio from January 1, 2014, to April 30, 2015 (N = 79,333), from which we extracted 5 subcorpora each with a co-occurring hashtag #India (n = 5027), #Iraq (n = 1238), #Nigeria (n = 1364), #Pakistan (n = 11,427), and #Syria (n = 2952).

View Article and Find Full Text PDF

Background: Information and emotions towards public health issues could spread widely through online social networks. Although aggregate metrics on the volume of information diffusion are available, we know little about how information spreads on online social networks. Health information could be transmitted from one to many (i.

View Article and Find Full Text PDF

Introduction: We describe videos posted to the YouTube video-sharing Web site by US state health departments (SHDs) and associated institutional factors.

Methods: YouTube channels from SHDs were identified, their data retrieved, and their videos saved to a playlist on January 10, 2016. Ten randomly sampled videos from each channel were manually coded for topics.

View Article and Find Full Text PDF

Foldable origami structures have been implemented into robotics as a way of compacting joints and circuitry into smaller structures. This technique is especially useful in minimally invasive surgical instruments, where the goal is to create slimline devices that can be inserted through small incisions. Origami also has the potential to cut costs by reducing the amount of material required for assembly.

View Article and Find Full Text PDF

A heatstroke is one of the most serious forms of heat injury and is classified as a medical emergency. It is characterized by an elevated core body temperature along with the failed body cooling mechanism in response to the sudden heat-up. People vulnerable to a heatstroke are children, elders and sports professionals.

View Article and Find Full Text PDF