RNA tertiary structures from experiments or computational predictions often contain missing atoms, which prevent analyses requiring full atomic structures. Current programs for RNA reconstruction can be slow, inaccurate, and/or require specific atoms to be present in the input. We present Arena (Atomic Reconstruction of RNA), which reconstructs a full atomic RNA structure from residues that can have as few as one atom.
View Article and Find Full Text PDFBiological regulation ubiquitously depends on protein allostery, but the regulatory mechanisms are incompletely understood, especially in proteins that undergo ligand-induced allostery with few structural changes. Here we used hydrogen-deuterium exchange with mass spectrometry (HDX/MS) to map allosteric effects in a paradigm ligand-responsive transcription factor, the lac repressor (LacI), in different functional states (apo, or bound to inducer, anti-inducer, and/or DNA). Although X-ray crystal structures of the LacI core domain in these states are nearly indistinguishable, HDX/MS experiments reveal widespread differences in flexibility.
View Article and Find Full Text PDFMotivation: The increasing availability of RNA structural information that spans many kilobases of transcript sequence imposes a need for tools that can rapidly screen, identify, and prioritize structural modules of interest.
Results: We describe RNA Structural Content Scanner (RSCanner), an automated tool that scans RNA transcripts for regions that contain high levels of secondary structure and then classifies each region for its relative propensity to adopt stable or dynamic structures. RSCanner then generates an intuitive heatmap enabling users to rapidly pinpoint regions likely to contain a high or low density of discrete RNA structures, thereby informing downstream functional or structural investigation.